Parallel matrix computations using a reconfigurable pipelined optical bus

被引:7
作者
Li, KQ [1 ]
Pan, Y
Zheng, SQ
机构
[1] SUNY Albany, Dept Math & Comp Sci, New Paltz, NY 12561 USA
[2] Univ Dayton, Dept Comp Sci, Dayton, OH 45469 USA
[3] Univ Texas, Dept Comp Sci, Richardson, TX 75083 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
characteristic polynomial; cost; determinant; linear system of equations; LU-factorization; matrix inversion; matrix multiplication; optical pipelined bus; processor array. rank; time complexity;
D O I
10.1006/jpdc.1999.1569
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present fast and cost-efficient parallel algorithms for a number of important and fundamental matrix computation problems on linear arrays with reconfigurable pipelined optical bus systems. These problems include computing the inverse, the characteristic polynomial, the determinant, the rank, the Nth power, and an LU- and a QR-factorization of a matrix and solving linear systems of equations. Our algorithms provide a wide range of performance-cost combinations. Compared with known results, the running time of parallel solutions to all these problems can be reduced by a factor of O( log N) while costs are maintained under o(N-4). (C) 1999 Academic Press.
引用
收藏
页码:13 / 30
页数:18
相关论文
共 27 条
[1]   DIGITAL OPTICAL COMPUTING WITH OPTICALLY SWITCHED DIRECTIONAL-COUPLERS [J].
BENNER, AF ;
JORDAN, HF ;
HEURING, VP .
OPTICAL ENGINEERING, 1991, 30 (12) :1936-1941
[2]  
CHIARULLI D, 1987, IEEE COMPUT, V30, P48
[3]   A TAXONOMY OF PROBLEMS WITH FAST PARALLEL ALGORITHMS [J].
COOK, SA .
INFORMATION AND CONTROL, 1985, 64 (1-3) :2-22
[4]   MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS [J].
COPPERSMITH, D ;
WINOGRAD, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :251-280
[5]  
Csanky L., 1976, SIAM Journal on Computing, V5, P618, DOI 10.1137/0205040
[6]   PIPELINED COMMUNICATIONS IN OPTICALLY INTERCONNECTED ARRAYS [J].
GUO, ZC ;
MELHEM, RG ;
HALL, RW ;
CHIARULLI, DM ;
LEVITAN, SP .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1991, 12 (03) :269-282
[7]   EFFICIENT PARALLEL ALGORITHMS ON OPTICALLY INTERCONNECTED ARRAYS OF PROCESSORS [J].
HAMDI, M ;
PAN, Y .
IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1995, 142 (02) :87-92
[8]   A NOTE ON THE PARALLEL COMPLEXITY OF COMPUTING THE RANK OF ORDER-N MATRICES [J].
IBARRA, OH ;
MORAN, S ;
ROSIER, LE .
INFORMATION PROCESSING LETTERS, 1980, 11 (4-5) :162-162
[9]  
Leighton T., 1992, INTRO PARALLEL ALGOR
[10]  
LeVerrier U., 1840, J MATH PURES APPL, V4, P220