Image Denoising Algorithm Combined with SGK Dictionary Learning and Principal Component Analysis Noise Estimation

被引:1
作者
Zhao, Wenjing [1 ]
Chi, Yue [1 ]
Zhou, Yatong [1 ]
Zhang, Cheng [1 ]
机构
[1] Hebei Univ Technol, Tianjin Key Lab Elect Mat & Devices, Tianjin 300401, Peoples R China
基金
国家教育部科学基金资助;
关键词
SPARSE REPRESENTATION; LEVEL ESTIMATION; TRANSFORM;
D O I
10.1155/2018/1259703
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
SGK (sequential generalization of K-means) dictionary learning denoising algorithm has the characteristics of fast denoising speed and excellent denoising performance. However, the noise standard deviation must be known in advance when using SGK algorithm to process the image. This paper presents a denoising algorithm combined with SGK dictionary learning and the principal component analysis (PCA) noise estimation. At first, the noise standard deviation of the image is estimated by using the PCA noise estimation algorithm. And then it is used for SGK dictionary learning algorithm. Experimental results show the following: (1) The SGK algorithm has the best denoising performance compared with the other three dictionary learning algorithms. (2) The SGK algorithm combined with PCA is superior to the SGK algorithm combined with other noise estimation algorithms. (3) Compared with the original SGK algorithm, the proposed algorithm has higher PSNR and better denoising performance.
引用
收藏
页数:10
相关论文
共 27 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Automatic noise estimation in images using local statistics. Additive and multiplicative cases [J].
Aja-Fernandez, Santiago ;
Vegas-Sanchez-Ferrero, Gonzalo ;
Martin-Fernandez, Marcos ;
Alberola-Lopez, Carlos .
IMAGE AND VISION COMPUTING, 2009, 27 (06) :756-770
[3]   Assessing noise amplitude in remotely sensed images using bit-plane and scatterplot approaches [J].
Barducci, Alessandro ;
Guzzi, Donatella ;
Marcoionni, Paolo ;
Pippi, Ivan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (08) :2665-2675
[4]   Multispectral image denoising with optimized vector non-local mean filter [J].
Ben Said, Ahmed ;
Hadjidj, Rachid ;
Melkemi, Kamal Eddine ;
Foufou, Sebti .
DIGITAL SIGNAL PROCESSING, 2016, 58 :115-126
[5]   Gabor shearlets [J].
Bodmann, Bernhard G. ;
Kutyniok, Gitta ;
Zhuang, Xiaosheng .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 38 (01) :87-114
[6]   Noise estimation in remote sensing imagery using data masking [J].
Corner, BR ;
Narayanan, RM ;
Reichenbach, SE .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (04) :689-702
[7]   Image denoising with block-matching and 3D filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IMAGE PROCESSING: ALGORITHMS AND SYSTEMS, NEURAL NETWORKS, AND MACHINE LEARNING, 2006, 6064
[8]   Regularized K-SVD [J].
Dumitrescu, Bogdan ;
Irofti, Paul .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (03) :309-313
[9]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[10]   A discriminative approach for wavelet denoising [J].
Hel-Or, Yacov ;
Shaked, Doron .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (04) :443-457