Steady-state entanglement of two superconducting qubits engineered by dissipation

被引:61
作者
Reiter, Florentin [1 ]
Tornberg, L. [2 ]
Johansson, Goran [2 ]
Sorensen, Anders S. [1 ]
机构
[1] Univ Copenhagen, QUANTOP, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Chalmers Univ Technol, SE-41296 Gothenburg, Sweden
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 03期
基金
新加坡国家研究基金会; 欧洲研究理事会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; QUANTUM; GENERATION; DYNAMICS; DRIVEN; QUTIP;
D O I
10.1103/PhysRevA.88.032317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a scheme for the dissipative preparation of an entangled steady state of two superconducting qubits in a circuit quantum electrodynamics (QED) setup. Combining resonator photon loss-a dissipative process already present in the setup-with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of the two qubits. This state is then maintained as the steady state of the driven, dissipative evolution. The performance of the dissipative state preparation protocol is studied analytically and verified numerically. In view of the experimental implementation of the presented scheme we investigate the effects of potential experimental imperfections and show that our scheme is robust to small deviations in the parameters. We find that high fidelities with the target state can be achieved both with state-of-the-art three-dimensional, as well as with the more commonly used two-dimensional transmons. The promising results of our study thus open a route for the demonstration of a highly entangled steady state in circuit QED.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Frequency-Resolved Purcell Effect for the Dissipative Generation of Steady-State Entanglement [J].
Vivas-Viana, Alejandro ;
Martin-Cano, Diego ;
Munoz, Carlos Sanchez .
PHYSICAL REVIEW LETTERS, 2024, 133 (17)
[22]   Engineering steady-state entanglement for two atoms held in separate cavities through laser cooling [J].
Shen Li-Tuo ;
Chen Rong-Xin ;
Wu Huai-Zhi ;
Yang Zhen-Biao .
CHINESE PHYSICS B, 2014, 23 (04)
[23]   Robust Concurrent Remote Entanglement Between Two Superconducting Qubits [J].
Narla, A. ;
Shankar, S. ;
Hatridge, M. ;
Leghtas, Z. ;
Sliwa, K. M. ;
Zalys-Geller, E. ;
Mundhada, S. O. ;
Pfaff, W. ;
Frunzio, L. ;
Schoelkopf, R. J. ;
Devoret, M. H. .
PHYSICAL REVIEW X, 2016, 6 (03)
[24]   Steady-state entanglement activation in optomechanical cavities [J].
Farace, Alessandro ;
Ciccarello, Francesco ;
Fazio, Rosario ;
Giovannetti, Vittorio .
PHYSICAL REVIEW A, 2014, 89 (02)
[25]   Phononic-waveguide-assisted steady-state entanglement of silicon-vacancy centers [J].
Qiao, Yi-Fan ;
Li, Hong-Zhen ;
Dong, Xing-Liang ;
Chen, Jia-Qiang ;
Zhou, Yuan ;
Li, Peng-Bo .
PHYSICAL REVIEW A, 2020, 101 (04)
[26]   Coupling-modulation-mediated generation of stable entanglement of superconducting qubits via dissipation [J].
Ma, Sheng-Li ;
Zhang, Jing ;
Li, Xin-Ke ;
Ren, Ya-Long ;
Xie, Ji-Kun ;
Cao, Ming-Tao ;
Li, Fu-Li .
EPL, 2021, 135 (06)
[27]   Entanglement dynamics of two interacting qubits under the influence of local dissipation [J].
Lone, Muzaffar Qadir .
PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (01)
[28]   Thermal entanglement of superconducting qubits for arbitrary interaction strength [J].
Ayoub, Areeda ;
Akram, Javed .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2021, 591
[29]   Transient and steady-state entanglement mediated by three-dimensional plasmonic waveguides [J].
Gangaraj, S. Ali Hassani ;
Nemilentsau, Andrei ;
Hanson, George W. ;
Hughes, Stephen .
OPTICS EXPRESS, 2015, 23 (17) :22330-22346
[30]   Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator [J].
Ng, H. T. ;
Chu, Shih-I .
PHYSICAL REVIEW A, 2011, 84 (02)