Generation of short-lived large-amplitude magnetohydrodynamic pulses by dispersive focusing

被引:31
作者
Fedun, V. [1 ]
Ruderman, M. S. [1 ]
Erdelyi, R. [1 ]
机构
[1] Univ Sheffield, Solar Phys & Space Plasma Res Ctr, Dept Appl Math, Sheffield S3 7RH, S Yorkshire, England
关键词
D O I
10.1016/j.physleta.2008.08.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Large-amplitude MHD waves are routinely observed in space plasmas. We suggest that dispersive focusing, previously proposed for the excitation of freak waves in the ocean, can be also responsible for the excitation of short-lived large-amplitude MHD waves in space plasmas. The DNLS equation describes MHD waves propagating in plasmas at moderate angles with respect to the equilibrium magnetic field. We obtained an analytical solution of the linearised DNLS equation governing the generation of large-amplitude MHD waves from small-amplitude wave trains due to the dispersive focusing. Our numerical solutions of the full DNLS equation confirm this result. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6107 / 6110
页数:4
相关论文
共 20 条
[1]   N-soliton solution for the derivative nonlinear Schrodinger equation with nonvanishing boundary conditions [J].
Chen, XJ ;
Yang, J ;
Lam, WK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13) :3263-3274
[2]   Two-soliton solution for the derivative nonlinear Schrodinger equation with nonvanishing boundary conditions [J].
Chen, XJ ;
Wang, HL ;
Lam, WK .
PHYSICS LETTERS A, 2006, 353 (2-3) :185-189
[3]   The modified Korteweg - de Vries equation in the theory of large - amplitude internal waves [J].
Grimshaw, R. ;
Pelinovsky, E. ;
Talipova, T. .
NONLINEAR PROCESSES IN GEOPHYSICS, 1997, 4 (04) :237-250
[4]   Short-lived large-amplitude pulses in the nonlinear long-wave model described by the modified Korteweg-de Vries equation [J].
Grimshaw, R ;
Pelinovsky, E ;
Talipova, T ;
Ruderman, MS ;
Erdélyi, R .
STUDIES IN APPLIED MATHEMATICS, 2005, 114 (02) :189-210
[5]   WEAK NON-LINEAR HYDROMAGNETIC WAVES IN A COLD COLLISION-FREE PLASMA [J].
KAKUTANI, T ;
ONO, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1969, 26 (05) :1305-&
[6]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801
[7]   EXACT SOLUTIONS OF DERIVATIVE NON-LINEAR SCHRODINGER EQUATION UNDER NONVANISHING CONDITIONS [J].
KAWATA, T ;
INOUE, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 44 (06) :1968-1976
[8]   INVERSE METHOD FOR THE MIXED NON-LINEAR SCHRODINGER-EQUATION AND SOLITON-SOLUTIONS [J].
KAWATA, T ;
SAKAI, J ;
KOBAYASHI, N .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1980, 48 (04) :1371-1379
[9]   Physical mechanisms of the rogue wave phenomenon [J].
Kharif, C ;
Pelinovsky, E .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2003, 22 (06) :603-634
[10]   MODIFIED NONLINEAR SCHRODINGER EQUATION FOR ALFVEN WAVES PROPAGATING ALONG MAGNETIC-FIELD IN COLD-PLASMAS [J].
MIO, K ;
OGINO, T ;
MINAMI, K ;
TAKEDA, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 41 (01) :265-271