A note on the submodular vertex cover problem with submodular penalties

被引:5
作者
Kamiyama, Naoyuki [1 ,2 ]
机构
[1] Kyushu Univ, Inst Math Ind, Fukuoka 812, Japan
[2] JST, PRESTO, Kawaguchi, Saitama, Japan
关键词
Submodular functions; The vertex cover problem; The set cover problem;
D O I
10.1016/j.tcs.2016.10.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we prove that there exists a combinatorial 3-approximation algorithm for the submodular vertex cover problem with submodular penalties introduced by Xu, Wang, Du, and Wu. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 97
页数:3
相关论文
共 3 条
[1]   Submodular Function Minimization under Covering Constraints [J].
Iwata, Satoru ;
Nagano, Kiyohito .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :671-680
[2]   Improved Approximation Algorithms for the Facility Location Problems with Linear/Submodular Penalties [J].
Li, Yu ;
Du, Donglei ;
Xiu, Naihua ;
Xu, Dachuan .
ALGORITHMICA, 2015, 73 (02) :460-482
[3]   Approximation algorithms for submodular vertex cover problems with linear/submodular penalties using primal-dual technique [J].
Xu, Dachuan ;
Wang, Fengmin ;
Du, Donglei ;
Wu, Chenchen .
THEORETICAL COMPUTER SCIENCE, 2016, 630 :117-125