New Kamenev-type theorems for super-linear matrix differential equations

被引:1
作者
Xu, Yancong [1 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou Xiasha 310036, Peoples R China
基金
中国国家自然科学基金;
关键词
Super-linear; Matrix differential equation; Oscillation; Riccati transformation; OSCILLATION CRITERIA;
D O I
10.1016/j.amc.2008.12.072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using Riccati transformation and the integral averaging technique, some new Kamenev-type oscillation criteria are established for the super-linear matrix differential systems X ''(t) + (X-n(t)Q(t) X*(n)(t))X(t) = 0 and X ''(t) + (X*(n)(t)Q(t)X-n(t))X(t) = 0, t >= t(0) > 0; n >= 1, where Q(t) is an m x m continuous symmetric and positive definite matrix for t is an element of [t(0); infinity). The results improve and complement those given by Tomastik [E. C. Tomastik, Oscillation of nonlinear matrix differential equations of second-order, Proc. Amer. Math. Soc. 19 (1968) 1427-1431], Ahlbrandt et al. [C. D. Ahlbrandt, J. Ridenhour, R. C. Thompson, Oscillation of super-linear matrix differential equation, Proc. Amer. Math. Soc. 105 (1989) 141 148] and Ou [L. M. Ou, Atkinson's super-linear oscillation theorem for matrix dynamic equations on a time scale, J. Math. Anal. Appl. 299 (2004) 615-629], which is illustrated by an example at the end of the paper. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:410 / 414
页数:5
相关论文
共 50 条
  • [21] Kamenev-type oscillation criteria for even order neutral differential equations with deviating arguments
    Meng, Fanwei
    Xu, Run
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1402 - 1408
  • [22] Kamenev-type criteria for nonlinear damped dynamic equations
    Martin Bohner
    TongXing Li
    [J]. Science China Mathematics, 2015, 58 : 1445 - 1452
  • [23] New Kamenev-type Oscillation Criteria for Second Order Delay Dynamic Equations
    Mo, Xiaoyan
    Xu, Zhiting
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (04) : 729 - 746
  • [24] Kamenev-type criteria for nonlinear second-order delay dynamic equations
    Senel, M. Tamer
    Utkut, Nadide
    El-Sheikh, M. M. A.
    Li, Tongxing
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (02): : 339 - 345
  • [25] Kamenev-type oscillation criteria for sublinear delay difference equations
    Kubiaczyk, I
    Saker, SH
    Morchalo, J
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (08) : 1273 - 1284
  • [26] Kamenev-Type Criteria for Testing the Asymptotic Behavior of Solutions of Third-Order Quasi-Linear Neutral Differential Equations
    Alrashdi, Hail S.
    Albalawi, Wedad
    Muhib, Ali
    Moaaz, Osama
    Elabbasy, Elmetwally M.
    [J]. MATHEMATICS, 2024, 12 (11)
  • [27] Kamenev-type oscillation criteria for nonlinear neutral delay difference equations
    Zhang, BG
    Saker, SH
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (11) : 1571 - 1584
  • [28] New Kamenev type oscillation criteria for linear matrix Hamiltonian systems
    Yuan, GS
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (01) : 69 - 78
  • [29] A remark on the existence of slowly growing positive solutions to second order super-linear ordinary differential equations
    Naito, Manabu
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (06): : 1759 - 1769
  • [30] Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales
    Wu, Xin
    Sun, Taixiang
    Xi, Hongjian
    Chen, Changhong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,