Fast Hankel tensor-vector product and its application to exponential data fitting

被引:47
作者
Ding, Weiyang [1 ]
Qi, Liqun [2 ]
Wei, Yimin [3 ,4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[4] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Hankel tensor; block Hankel tensor; anti-circulant tensor; fast tensor-vector product; fast Fourier transform; higher-order singular value decomposition; exponential data fitting; PARAMETER-ESTIMATION; MULTILINEAR-ALGEBRA; DAMPING FACTORS; ESPRIT; APPROXIMATION; DECOMPOSITION; EIGENVALUES; FREQUENCIES; ALGORITHM;
D O I
10.1002/nla.1970
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is contributed to a fast algorithm for Hankel tensor-vector products. First, we explain the necessity of fast algorithms for Hankel and block Hankel tensor-vector products by sketching the algorithm for both one-dimensional and multi-dimensional exponential data fitting. For proposing the fast algorithm, we define and investigate a special class of Hankel tensors that can be diagonalized by the Fourier matrices, which is called anti-circulant tensors. Then, we obtain a fast algorithm for Hankel tensor-vector products by embedding a Hankel tensor into a larger anti-circulant tensor. The computational complexity is about O(m2nlogmn) for a square Hankel tensor of order m and dimension n, and the numerical examples also show the efficiency of this scheme. Moreover, the block version for multi-level block Hankel tensors is discussed. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:814 / 832
页数:19
相关论文
共 34 条
[1]   FAST MULTILINEAR SINGULAR VALUE DECOMPOSITION FOR STRUCTURED TENSORS [J].
Badeau, Roland ;
Boyer, Remy .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1008-1021
[2]   Higher order tensor-based method for delayed exponential fitting [J].
Boyer, Remy ;
De Lathatrwer, Lieven ;
Abed-Meraim, Karim .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (06) :2795-2809
[3]   A Lanczos bidiagonalization algorithm for Hankel matrices [J].
Browne, Kevin ;
Qiao, Sanzheng ;
Wei, Yimin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (5-6) :1531-1543
[4]  
Chan R., 2007, INTRO ITERATIVE TOEP
[5]  
Chen Z., 2014, ARXIV13122752
[6]  
Davis PJ., 1970, CIRCULANT MATRICES
[7]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[8]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[9]  
De Lathauwer L, TECHNICAL REPORT
[10]   BLIND SEPARATION OF EXPONENTIAL POLYNOMIALS AND THE DECOMPOSITION OF A TENSOR IN RANK-(Lr, Lr, 1) TERMS [J].
De Lathauwer, Lieven .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) :1451-1474