A compactification of the moduli space of principal Higgs bundles over singular curves

被引:2
作者
Lo Giudice, Alessio [1 ]
Pustetto, Andrea [2 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Math, Campinas, SP, Brazil
[2] Pontificia Univ Javeriana, Dept Math, Carrera, Colombia
基金
巴西圣保罗研究基金会;
关键词
Decorated vector bundles; Moduli space; Principal Higgs bundles; Singular curves; GENERALIZED PARABOLIC BUNDLES; NODAL CURVES;
D O I
10.1016/j.geomphys.2016.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A principal Higgs bundle (P, phi) over a singular curve X is a pair consisting of a principal bundle P and a morphism phi : X -> AdP circle times ohm(1)(X). We construct the moduli space of principal Higgs G-bundles over an irreducible singular curve X using the theory of decorated vector bundles. More precisely, given a faithful representation rho : G -> SI(V) of G, we consider principal Higgs bundles as triples (E, q, phi), where E is a vector bundle with rk(E) = dim V over the normalization X of X, q is a parabolic structure on E and phi : E-a,E-b -> L is a morphism of bundles, L being a line bundle and E-a,E-b double dagger (E-circle times a)(circle times b) a vector bundle depending on the Higgs field phi, and on the principal bundle structure. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:328 / 342
页数:15
相关论文
共 9 条
[1]   GENERALIZED PARABOLIC BUNDLES AND APPLICATIONS TO TORSION-FREE SHEAVES ON NODAL CURVES [J].
BHOSLE, U .
ARKIV FOR MATEMATIK, 1992, 30 (02) :187-215
[2]   Generalized parabolic bundles and applications .2. [J].
Bhosle, UN .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1996, 106 (04) :403-420
[3]   Semistable and numerically effective principal (Higgs) bundles [J].
Bruzzo, Ugo ;
Grana Otero, Beatriz .
ADVANCES IN MATHEMATICS, 2011, 226 (04) :3655-3676
[4]  
HITCHIN NJ, 1987, P LOND MATH SOC, V55, P59
[5]  
NITSURE N, 1991, P LOND MATH SOC, V62, P275
[6]  
Schmitt A.H.W., 2000, MATH0006029 ARXIV
[7]  
Schmitt AHW, 2005, J EUR MATH SOC, V7, P215
[8]  
Schmitt AHW, 2008, ZUR LECT ADV MATH, P1
[9]  
Simpson C. T., 1994, I HAUTES ETUDES SCI, V79, P47