Multiple Object Detection Based on Clustering and Deep Learning Methods

被引:28
作者
Huu Thu Nguyen [1 ]
Lee, Eon-Ho [1 ]
Bae, Chul Hee [1 ]
Lee, Sejin [2 ]
机构
[1] Kongju Natl Univ, Div Mech Engn, Cheonan 31080, South Korea
[2] Kongju Natl Univ, Div Mech & Automot Engn, Cheonan 31080, South Korea
基金
新加坡国家研究基金会;
关键词
K-means clustering; DBSCAN; multiple object detection; LiDAR; underwater sonar images; SEGMENTATION;
D O I
10.3390/s20164424
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Multiple object detection is challenging yet crucial in computer vision. In This study, owing to the negative effect of noise on multiple object detection, two clustering algorithms are used on both underwater sonar images and three-dimensional point cloud LiDAR data to study and improve the performance result. The outputs from using deep learning methods on both types of data are treated with K-Means clustering and density-based spatial clustering of applications with noise (DBSCAN) algorithms to remove outliers, detect and cluster meaningful data, and improve the result of multiple object detections. Results indicate the potential application of the proposed method in the fields of object detection, autonomous driving system, and so forth.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 2015, P IEEE C COMP VIS PA
[2]  
[Anonymous], 2020, SENSORS BASEL
[3]  
[Anonymous], 2010, Commun. Surveys Tuts., DOI DOI 10.1038/nature14539
[4]   A Study of 3D Point Cloud Classification of Urban Structures Based on Spherical Signature Descriptor Using LiDAR Sensor Data [J].
Bae, Chul Hee ;
Lee, Sejin .
TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2019, 43 (02) :85-91
[5]   Sonar-Based Detection and Tracking of a Diver for Underwater Human-Robot Interaction Scenarios [J].
DeMarco, Kevin J. ;
West, Michael E. ;
Howard, Ayanna M. .
2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, :2378-2383
[6]  
Douillard B, 2011, IEEE INT CONF ROBOT
[7]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[8]  
Ester M., 1996, 2 INT C KNOWL DISC D, V240, P226
[9]  
Galceran E., 2012, IFAC Proc., V45, P306
[10]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830