Plant drought stress: effects, mechanisms and management

被引:1702
|
作者
Farooq, M. [1 ]
Wahid, A. [2 ]
Kobayashi, N. [3 ]
Fujita, D. [3 ]
Basra, S. M. A. [4 ]
机构
[1] Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan
[2] Univ Agr Faisalabad, Dept Bot, Faisalabad 38040, Pakistan
[3] Int Rice Res Inst, Manila, Philippines
[4] Univ Agr Faisalabad, Dept Crop Physiol, Faisalabad 38040, Pakistan
关键词
drought response; stomatal oscillation; osmoprotectants; hormones; stress proteins; drought management; CO2; WATER-USE EFFICIENCY; BINDING TRANSCRIPTION FACTOR; CELL-MEMBRANE STABILITY; GAMMA-AMINOBUTYRIC-ACID; CYCLIC ELECTRON FLOW; ORYZA-SATIVA L; OXIDATIVE STRESS; SALICYLIC-ACID; GRAIN-YIELD; ABSCISIC-ACID;
D O I
10.1051/agro:2008021
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Scarcity of water is a severe environmental constraint to plant productivity. Drought-induced loss in crop yield probably exceeds losses from all other causes, since both the severity and duration of the stress are critical. Here, we have reviewed the effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants. This article also describes the mechanism of drought resistance in plants on a morphological, physiological and molecular basis. Various management strategies have been proposed to cope with drought stress. Drought stress reduces leaf size, stem extension and root proliferation, disturbs plant water relations and reduces water-use efficiency. Plants display a variety of physiological and biochemical responses at cellular and whole-organism levels towards prevailing drought stress, thus making it a complex phenomenon. CO2 assimilation by leaves is reduced mainly by stomatal closure, membrane damage and disturbed activity of various enzymes, especially those of CO2 fixation and adenosine triphosphate synthesis. Enhanced metabolite flux through the photorespiratory pathway increases the oxidative load on the tissues as both processes generate reactive oxygen species. Injury caused by reactive oxygen species to biological macromolecules under drought stress is among the major deterrents to growth. Plants display a range of mechanisms to withstand drought stress. The major mechanisms include curtailed water loss by increased diffusive resistance, enhanced water uptake with prolific and deep root systems and its efficient use, and smaller and succulent leaves to reduce the transpirational loss. Among the nutrients, potassium ions help in osmotic adjustment; silicon increases root endodermal silicification and improves the cell water balance. Low-molecular-weight osmolytes, including glycinebetaine, proline and other amino acids, organic acids, and polyols, are crucial to sustain cellular functions under drought. Plant growth substances such as salicylic acid, auxins, gibberrellins, cytokinin and abscisic acid modulate the plant responses towards drought. Polyamines, citrulline and several enzymes act as antioxidants and reduce the adverse effects of water deficit. At molecular levels several drought-responsive genes and transcription factors have been identified, such as the dehydration-responsive element-binding gene, aquaporin, late embryogenesis abundant proteins and dehydrins. Plant drought tolerance can be managed by adopting strategies such as mass screening and breeding, marker-assisted selection and exogenous application of hormones and osmoprotectants to seed or growing plants, as well as engineering for drought resistance.
引用
收藏
页码:185 / 212
页数:28
相关论文
共 50 条
  • [21] Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell
    Chaves, M. M.
    Flexas, J.
    Pinheiro, C.
    ANNALS OF BOTANY, 2009, 103 (04) : 551 - 560
  • [22] Management of Rhizosphere Microbiota and Plant Production under Drought Stress: A Comprehensive Review
    Vidal, Catalina
    Gonzalez, Felipe
    Santander, Christian
    Perez, Rodrigo
    Gallardo, Victor
    Santos, Cledir
    Aponte, Humberto
    Ruiz, Antonieta
    Cornejo, Pablo
    PLANTS-BASEL, 2022, 11 (18):
  • [23] Crop Production under Drought and Heat Stress: Plant Responses and Management Options
    Fahad, Shah
    Bajwa, Ali A.
    Nazir, Usman
    Anjum, Shakeel A.
    Farooq, Ayesha
    Zohaib, Ali
    Sadia, Sehrish
    Nasim, Wajid
    Adkins, Steve
    Saud, Shah
    Ihsan, Muhammad Z.
    Alharby, Hesham
    Wu, Chao
    Wang, Depeng
    Huang, Jianliang
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [24] Meta-Analysis of Effects of Melatonin Treatment on Plant Drought Stress Alleviation
    Wang, Yuzhe
    Gun, Siyu
    Li, Yaoyu
    Qu, Laiye
    AGRICULTURE-BASEL, 2022, 12 (09):
  • [25] Salt Stress in Wheat: Effects, Tolerance Mechanisms, and Management
    Farooq, Muhammad
    Zahra, Noreen
    Ullah, Aman
    Nadeem, Faisal
    Rehman, Abdul
    Kapoor, Riti
    Al-Hinani, Mawra S.
    Siddique, Kadambot H. M.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, 24 (04) : 8151 - 8173
  • [26] Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management
    Shahzad, Babar
    Rehman, Abdul
    Tanveer, Mohsin
    Wang, Lei
    Park, Sang Koo
    Ali, Amjed
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (02) : 781 - 795
  • [27] Salinity Stress in Wheat: Effects, Mechanisms and Management Strategies
    Seleiman, Mahmoud F.
    Aslam, Muhammad Talha
    Alhammad, Bushra Ahmed
    Hassan, Muhammad Umair
    Maqbool, Rizwan
    Chattha, Muhammad Umer
    Khan, Imran
    Gitari, Harun Ireri
    Uslu, Omer S.
    Roy, Rana
    Battaglia, Martin Leonardo
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2022, 91 (04) : 667 - 694
  • [28] Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management
    Babar Shahzad
    Abdul Rehman
    Mohsin Tanveer
    Lei Wang
    Sang Koo Park
    Amjed Ali
    Journal of Plant Growth Regulation, 2022, 41 : 781 - 795
  • [29] Grain development in wheat under combined heat and drought stress: Plant responses and management
    Zahra, Noreen
    Wahid, Abdul
    Hafeez, Muhammad Bilal
    Ullah, Aman
    Siddique, Kadambot H. M.
    Farooq, Muhammad
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 188
  • [30] Plant photosynthesis under heat stress: Effects and management
    Zahra, Noreen
    Hafeez, Muhammad Bilal
    Ghaffar, Abdul
    Kausar, Abida
    Al Zeidi, Maryam
    Siddique, Kadambot H. M.
    Farooq, Muhammad
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 206