Plant drought stress: effects, mechanisms and management

被引:1702
|
作者
Farooq, M. [1 ]
Wahid, A. [2 ]
Kobayashi, N. [3 ]
Fujita, D. [3 ]
Basra, S. M. A. [4 ]
机构
[1] Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan
[2] Univ Agr Faisalabad, Dept Bot, Faisalabad 38040, Pakistan
[3] Int Rice Res Inst, Manila, Philippines
[4] Univ Agr Faisalabad, Dept Crop Physiol, Faisalabad 38040, Pakistan
关键词
drought response; stomatal oscillation; osmoprotectants; hormones; stress proteins; drought management; CO2; WATER-USE EFFICIENCY; BINDING TRANSCRIPTION FACTOR; CELL-MEMBRANE STABILITY; GAMMA-AMINOBUTYRIC-ACID; CYCLIC ELECTRON FLOW; ORYZA-SATIVA L; OXIDATIVE STRESS; SALICYLIC-ACID; GRAIN-YIELD; ABSCISIC-ACID;
D O I
10.1051/agro:2008021
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Scarcity of water is a severe environmental constraint to plant productivity. Drought-induced loss in crop yield probably exceeds losses from all other causes, since both the severity and duration of the stress are critical. Here, we have reviewed the effects of drought stress on the growth, phenology, water and nutrient relations, photosynthesis, assimilate partitioning, and respiration in plants. This article also describes the mechanism of drought resistance in plants on a morphological, physiological and molecular basis. Various management strategies have been proposed to cope with drought stress. Drought stress reduces leaf size, stem extension and root proliferation, disturbs plant water relations and reduces water-use efficiency. Plants display a variety of physiological and biochemical responses at cellular and whole-organism levels towards prevailing drought stress, thus making it a complex phenomenon. CO2 assimilation by leaves is reduced mainly by stomatal closure, membrane damage and disturbed activity of various enzymes, especially those of CO2 fixation and adenosine triphosphate synthesis. Enhanced metabolite flux through the photorespiratory pathway increases the oxidative load on the tissues as both processes generate reactive oxygen species. Injury caused by reactive oxygen species to biological macromolecules under drought stress is among the major deterrents to growth. Plants display a range of mechanisms to withstand drought stress. The major mechanisms include curtailed water loss by increased diffusive resistance, enhanced water uptake with prolific and deep root systems and its efficient use, and smaller and succulent leaves to reduce the transpirational loss. Among the nutrients, potassium ions help in osmotic adjustment; silicon increases root endodermal silicification and improves the cell water balance. Low-molecular-weight osmolytes, including glycinebetaine, proline and other amino acids, organic acids, and polyols, are crucial to sustain cellular functions under drought. Plant growth substances such as salicylic acid, auxins, gibberrellins, cytokinin and abscisic acid modulate the plant responses towards drought. Polyamines, citrulline and several enzymes act as antioxidants and reduce the adverse effects of water deficit. At molecular levels several drought-responsive genes and transcription factors have been identified, such as the dehydration-responsive element-binding gene, aquaporin, late embryogenesis abundant proteins and dehydrins. Plant drought tolerance can be managed by adopting strategies such as mass screening and breeding, marker-assisted selection and exogenous application of hormones and osmoprotectants to seed or growing plants, as well as engineering for drought resistance.
引用
收藏
页码:185 / 212
页数:28
相关论文
共 50 条
  • [1] Plant drought stress: effects, mechanisms and management
    M. Farooq
    A. Wahid
    N. Kobayashi
    D. Fujita
    S. M. A. Basra
    Agronomy for Sustainable Development, 2009, 29 : 185 - 212
  • [2] Drought Stress in Grain Legumes: Effects, Tolerance Mechanisms and Management
    Khatun, Marium
    Sarkar, Sumi
    Era, Farzana Mustafa
    Islam, A. K. M. Mominul
    Anwar, Md. Parvez
    Fahad, Shah
    Datta, Rahul
    Islam, A. K. M. Aminul
    AGRONOMY-BASEL, 2021, 11 (12):
  • [3] Plant photosynthetic responses under drought stress: Effects and management
    Zahra, Noreen
    Hafeez, Muhammad Bilal
    Kausar, Abida
    Al Zeidi, Maryam
    Asekova, Sovetgul
    Siddique, Kadambot H. M.
    Farooq, Muhammad
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2023, 209 (05) : 651 - 672
  • [4] Drought Stress in Brassica napus: Effects, Tolerance Mechanisms, and Management Strategies
    Batool, Maria
    El-Badri, Ali Mahmoud
    Hassan, Muhammad Umair
    Yang Haiyun
    Wang Chunyun
    Yan Zhenkun
    Kuai Jie
    Wang, Bo
    Zhou, Guangsheng
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (01) : 21 - 45
  • [5] Drought Stress in Brassica napus: Effects, Tolerance Mechanisms, and Management Strategies
    Maria Batool
    Ali Mahmoud El-Badri
    Muhammad Umair Hassan
    Yang Haiyun
    Wang Chunyun
    Yan Zhenkun
    Kuai Jie
    Bo Wang
    Guangsheng Zhou
    Journal of Plant Growth Regulation, 2023, 42 : 21 - 45
  • [6] Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance
    Bittencourt, Priscila Pires
    Alves, Alice Ferreira
    Ferreira, Mariana Barduco
    da Silva Irineu, Luiz Eduardo Souza
    Pinto, Vitor Batista
    Olivares, Fabio Lopes
    MICROORGANISMS, 2023, 11 (02)
  • [7] Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria
    Cinzia Forni
    Daiana Duca
    Bernard R. Glick
    Plant and Soil, 2017, 410 : 335 - 356
  • [8] Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria
    Forni, Cinzia
    Duca, Daiana
    Glick, Bernard R.
    PLANT AND SOIL, 2017, 410 (1-2) : 335 - 356
  • [9] Molecular mechanisms of plant responses and tolerance of drought and cold stress
    Shinozaki, K
    Yamaguchi-Shinozaki, K
    PLANT BIOTECHNOLOGY 2002 AND BEYOND, 2003, : 31 - 37
  • [10] Drought Stress in Quinoa: Effects, Responsive Mechanisms, and Management through Biochar Amended Soil: A Review
    Akram, Muhammad Zubair
    Libutti, Angela
    Rivelli, Anna Rita
    AGRICULTURE-BASEL, 2024, 14 (08):