COMPARISON OF REGRESSION MODELS FOR SPATIAL DOWNSCALING OF COARSE SCALE SATELLITE-BASED PRECIPITATION PRODUCTS

被引:0
|
作者
Kim, Yeseul [1 ]
Park, No-Wook [1 ]
机构
[1] Inha Univ, Dept Geoinformat Engn, Incheon, South Korea
关键词
Downscaling; regression; trend component; precipitation; TRMM;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper compared and evaluated the effects of explanatory power of regression models on predictive performance in component decomposition-based downscaling of coarse scale precipitation products. The regression models applied in this paper include (1) multiple linear regression (MLR), (2) geographically weighted regression (GWR), and (3) random forest (RF). From a case study of spatial downscaling of TRMM monthly precipitation products in South Korea, it was observed that GWR showed the highest explanatory power, followed by RF and MLR. From evaluation with independent rain gauge data, GWR-based downscaling outperformed other regression models. However, MLR-based downscaling with the lowest explanatory power showed better predictive performance than RF-based downscaling. Furthermore, the RF-based downscaling results could not preserve the overall patterns of original TRMM products. The GWR-based downscaling with the superior predictive performance included noisy artifacts in the downscaling result, which may be explained by over-fitting to the original coarse scale data. Thus, high explanatory power of regression models does not always improve predictive performance and it is suggested that other measures such as the preservation of spatial patterns of original coarse scale data should be considered for evaluation of downscaling results.
引用
收藏
页码:4634 / 4637
页数:4
相关论文
共 50 条
  • [41] SATELLITE-BASED ESTIMATES OF HEAVY PRECIPITATION
    SCOFIELD, RA
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1984, 481 : 84 - 91
  • [42] Evaluation of IMERG for GPM satellite-based precipitation products for extreme precipitation indices over Turkiye
    Aksu, Hakan
    Taflan, Gaye Yesim
    Yaldiz, Sait Genar
    Akgul, Mehmet Ali
    ATMOSPHERIC RESEARCH, 2023, 291
  • [43] Applicability of two satellite-based precipitation products for assessing rainfall erosivity in China
    Chen, Yuhong
    Xu, Menghua
    Wang, Zhaoli
    Gao, Ping
    Lai, Chengguang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 757
  • [44] Assessment of Satellite-Based Precipitation Products Performance over the Hyperarid Climate of Kuwait
    AlMutairi, Bandar S.
    JOURNAL OF HYDROMETEOROLOGY, 2021, 22 (09) : 2489 - 2501
  • [45] Using Fractal Downscaling of Satellite Precipitation Products for Hydrometeorological Applications
    Tao, Kun
    Barros, Ana P.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2010, 27 (03) : 409 - 427
  • [46] Evaluating satellite-based precipitation products in monitoring drought events in southwest China
    Yan, Guixia
    Liu, Yi
    Chen, Xi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (10) : 3186 - 3214
  • [47] Drought monitoring utility of satellite-based precipitation products across mainland China
    Zhong, Ruida
    Chen, Xiaohong
    Lai, Chengguang
    Wang, Zhaoli
    Lian, Yanqing
    Yu, Haijun
    Wu, Xiaoqing
    JOURNAL OF HYDROLOGY, 2019, 568 : 343 - 359
  • [48] Error Characteristic Analysis of Satellite-Based Precipitation Products over Mainland China
    Fu, Hanjia
    Zhu, Li
    Nzabarinda, Vincent
    Lv, Xiaoyu
    Guo, Hao
    ATMOSPHERE, 2022, 13 (08)
  • [49] Implementation of HydroBID Model with Satellite-Based Precipitation Products in Guadalquivir Basin, Bolivia
    Saavedra, Oliver
    Urena, Jhonatan
    Perales, Moises
    WATER, 2023, 15 (18)
  • [50] IMPROVING THE ACCURACY OF SATELLITE-BASED NEAR SURFACE AIR TEMPERATURE AND PRECIPITATION PRODUCTS
    Karaman, C. H.
    Akyurek, Z.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 537 - 545