Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks

被引:33
|
作者
Zhu, Xudong [1 ]
Zhuang, Qianlai [1 ]
Qin, Zhangcai [1 ]
Glagolev, Mikhail [2 ]
Song, Lulu [1 ,3 ,4 ]
机构
[1] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[2] Moscow MV Lomonosov State Univ, Dept Phys & Meliorat Soils, Moscow, Russia
[3] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China
[4] Chinese Acad Sci, Grad Univ, Coll Resources & Environm, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
methane emissions; northern wetlands; neural networks; ANNUAL CARBON BALANCE; ATMOSPHERIC METHANE; GLOBAL DISTRIBUTION; WATER-TABLE; CH4; FLUX; TUNDRA; TEMPERATURE; PERMAFROST; MODEL; ECOSYSTEMS;
D O I
10.1002/gbc.20052
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Methane (CH4) emissions from wetland ecosystems in nothern high latitudes provide a potentially positive feedback to global climate warming. Large uncertainties still remain in estimating wetland CH4 emisions at regional scales. Here we develop a statistical model of CH4 emissions using an artificial neural network (ANN) approach and field observations of CH4 fluxes. Six explanatory variables (air temperature, precipitation, water table depth, soil organic carbon, soil total porosity, and soil pH) are included in the development of ANN models, which are then extrapolated to the northern high latitudes to estimate monthly CH4 emissions from 1990 to 2009. We estimate that the annual wetland CH4 source from the northern high latitudes (north of 45 degrees N) is 48.7 (4) yr(-1) (1 (12)g) with an uncertainty range of 44.0 similar to 53.7 (4) yr(-1). (4) emissions show a large spatial variability over the northern high latitudes, due to variations in hydrology, climate, and soil conditions. Significant interannual and seasonal variations of wetland CH4 emissions exist in the past 2 decades, and the emissions in this period are most sensitive to variations in water table position. (4) dynamics in this region, research priorities should be directed to better characterizing hydrological processes of wetlands, including temporal dynamics of water table position and spatial dynamics of wetland areas.
引用
收藏
页码:592 / 604
页数:13
相关论文
共 50 条
  • [11] Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC
    Paudel, Rajendra
    Mahowald, Natalie M.
    Hess, Peter G. M.
    Meng, Lei
    Riley, William J.
    ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (03):
  • [12] Using artificial neural networks to estimate snow water equivalent from snow depth
    Odry, J.
    Boucher, M. A.
    Cantet, P.
    Lachance-Cloutier, S.
    Turcotte, R.
    St-Louis, P. Y.
    CANADIAN WATER RESOURCES JOURNAL, 2020, 45 (03) : 252 - 268
  • [13] Climate change rivals fertilizer use in driving soil nitrous oxide emissions in the northern high latitudes: Insights from terrestrial biosphere models
    Pan, Naiqing
    Tian, Hanqin
    Shi, Hao
    Pan, Shufen
    Canadell, Josep G.
    Chang, Jinfeng
    Ciais, Philippe
    Davidson, Eric A.
    Hugelius, Gustaf
    Ito, Akihiko
    Jackson, Robert B.
    Joos, Fortunat
    Lienert, Sebastian
    Millet, Dylan B.
    Olin, Stefan
    Patra, Prabir K.
    Thompson, Rona L.
    Vuichard, Nicolas
    Wells, Kelley C.
    Wilson, Chris
    You, Yongfa
    Zaehle, Sonke
    ENVIRONMENT INTERNATIONAL, 2025, 196
  • [14] National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations
    Shen, Lu
    Jacob, Daniel J.
    Gautam, Ritesh
    Omara, Mark
    Scarpelli, Tia R.
    Lorente, Alba
    Zavala-Araiza, Daniel
    Lu, Xiao
    Chen, Zichong
    Lin, Jintai
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [15] Estimating Cloth Simulation Parameters From a Static Drape Using Neural Networks
    Ju, Eunjung
    Choi, Myung Geol
    IEEE ACCESS, 2020, 8 : 195113 - 195121
  • [16] Estimating methane emissions from beef cattle in a feedlot using the eddy covariance technique and footprint analysis
    Prajapati, Prajaya
    Santos, Eduardo A.
    AGRICULTURAL AND FOREST METEOROLOGY, 2018, 258 : 18 - 28
  • [17] Estimation of Energy Yield From Wind Farms Using Artificial Neural Networks
    Mabel, M. Carolin
    Fernandez, E.
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2009, 24 (02) : 459 - 464
  • [18] Pharmacokinetic parameter prediction from drug structure using artificial neural networks
    Turner, JV
    Maddalena, DJ
    Cutler, DJ
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2004, 270 (1-2) : 209 - 219
  • [19] Prediction of gait speed from plantar pressure using artificial neural networks
    Joo, Su-Bin
    Oh, Seung Eel
    Sim, Taeyong
    Kim, Hyunggun
    Choi, Chang Hyun
    Koo, Hyeran
    Mun, Joung Hwan
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (16) : 7398 - 7405
  • [20] Estimating methane emissions from underground natural gas pipelines using an atmospheric dispersion-based method
    Tian, Shanru
    Smits, Kathleen M.
    Cho, Younki
    Riddick, Stuart N.
    Zimmerle, Daniel J.
    Duggan, Aidan
    ELEMENTA-SCIENCE OF THE ANTHROPOCENE, 2022, 10 (01):