BRAUER GROUP AND WHOLE POINTS OF TWO FAMILIES OF CUBIC SURFACES CLOSELY CONNECTED

被引:26
作者
Colliot-Thelene, Jean-Louis [1 ]
Wittenberg, Olivier [2 ]
机构
[1] Univ Paris 11, CNRS, UMR 8628, F-91405 Orsay, France
[2] Ecole Normale Super, Dept Math & Applicat, F-75230 Paris 05, France
关键词
INTEGRAL POINTS; WEAK APPROXIMATION; MANIN OBSTRUCTION; QUADRATIC-FORMS; VARIETIES; DENSITY; CUBES; SUMS;
D O I
10.1353/ajm.2012.0036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1303 / 1327
页数:25
相关论文
共 33 条
[1]  
[Anonymous], PUBLICATIONS I MATH
[2]  
[Anonymous], 2006, An introduction to the theory of numbers
[3]  
[Anonymous], 2002, AZUMINO ADV STUD PUR
[4]  
Beukers F., 1996, CRM P LECT NOTES, V19, P25
[5]   A NOTE ON THE DIOPHANTINE EQUATION X3+Y3+Z3=3 [J].
CASSELS, JWS .
MATHEMATICS OF COMPUTATION, 1985, 44 (169) :265-266
[6]   Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms [J].
Colliot-Thelene, Jean-Louis ;
Xu, Fei .
COMPOSITIO MATHEMATICA, 2009, 145 (02) :309-363
[7]  
COLLIOTTHELENE JL, 1994, J REINE ANGEW MATH, V453, P49
[8]   DESCENT FOR RATIONAL VARITIES .2. [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :375-492
[9]  
COLLIOTTHELENE JL, 1987, LECT NOTES MATH, V1290, P1
[10]  
Cremona J. E., 1997, ALGORITHMS MODULAR E