Global dynamic of abelian groups of affine maps on Cn

被引:1
作者
Ayadi, Adlene [1 ]
N'dao, Yahya [2 ]
机构
[1] Univ Gafsa, Fac Sci, Dept Math, Gafsa, Tunisia
[2] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
关键词
Affine map; Abelian group; Minimal set; Dense orbit; REAL LINE; THEOREM;
D O I
10.1016/j.topol.2013.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any abelian group G of affine maps on C-n, there exists a G-invariant affine subspace epsilon of C-n such that epsilon contains all elements of C-n on which G acts identically, the closure of every orbit in epsilon is a minimal set of G/epsilon and if epsilon not equal C-n there are G-invariant affine subspaces H-1, ..., H-s (1 <= s <= n - dim(epsilon)) of C-n of dimension n - 1 such that the closure of every orbit in U = C-n\U-k=1(s) H-k is a minimal set of G/U. Moreover, if G has a dense orbit, all orbits in U are dense in C-n. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1444 / 1455
页数:12
相关论文
共 9 条