System identification of Wiener systems with B-spline functions using De Boor recursion

被引:8
作者
Hong, X. [1 ]
Mitchell, R. J. [1 ]
Chen, S. [2 ,3 ]
机构
[1] Univ Reading, Sch Syst Engn, Reading RG6 6AY, Berks, England
[2] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[3] King Abdulaziz Univ, Fac Engn, Jeddah 21589, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
B-spline; De Boor recursion; Wiener system; system identification; HAMMERSTEIN MODEL IDENTIFICATION; A-PRIORI INFORMATION; NONLINEAR-SYSTEMS; NONPARAMETRIC IDENTIFICATION; PREDICTIVE CONTROL; LEAST AMOUNT; ALGORITHM; APPROXIMATION; CONVERGENCE;
D O I
10.1080/00207721.2012.669863
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss-Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
引用
收藏
页码:1666 / 1674
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 1978, A Practical Guide to Splines
[2]   Towards identification of Wiener systems with the least amount of a priori information on the nonlinearity [J].
Bai, Er-Wei ;
Reyland, John, Jr. .
AUTOMATICA, 2008, 44 (04) :910-919
[3]   Convergence of the iterative algorithm for a general Hammerstein system identification [J].
Bai, Er-Wei ;
Li, Kang .
AUTOMATICA, 2010, 46 (11) :1891-1896
[4]   Towards identification of Wiener systems with the least amount of a priori information: IIR cases [J].
Bai, Er-Wei ;
Reyland, John, Jr. .
AUTOMATICA, 2009, 45 (04) :956-964
[5]   A blind approach to Hammerstein model identification [J].
Bai, EW ;
Fu, MY .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (07) :1610-1619
[6]   An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J].
Bai, EW .
AUTOMATICA, 1998, 34 (03) :333-338
[7]   Automatic nonlinear auto-tuning method for Hammerstein modeling of electrical drives [J].
Balestrino, A ;
Landi, A ;
Ould-Zmirli, M ;
Sani, L .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (03) :645-655
[8]   NONLINEAR-SYSTEM IDENTIFICATION USING THE HAMMERSTEIN MODEL [J].
BILLINGS, SA ;
FAKHOURI, SY .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1979, 10 (05) :567-578
[9]   Model-based predictive control for Hammerstein-Wiener systems [J].
Bloemen, HHJ ;
van den Boom, TJJ ;
Verbruggen, HB .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (05) :482-495
[10]  
Brown M., 1994, NEUROFUZZY ADAPTIVE