Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors

被引:32
作者
Cui, Huijuan [1 ,2 ]
Zheng, Jianfeng [1 ]
Zhu, Yanyan [1 ,2 ]
Wang, Zhijian [1 ]
Jia, Suping [1 ]
Zhu, Zhenping [1 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Graphene; Framework; Water-soluble substrate; Supercapacitors; Rate capability; OXIDE; ACTIVATION; NANOSHEETS; REDUCTION; GRAPHITE; ENERGY; FILMS;
D O I
10.1016/j.jpowsour.2015.05.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Substrates are normally required in the chemical synthesis of graphene to enhance its formation. However, removing substrates in the post purification stage is difficult, during which harsh reagents are used and the substrates are usually consumed undesirably. In this paper, we report that universal sodium carbonate (Na2CO3) particles can effectively promote the construction of well-structured graphene frameworks based on a quick thermal decomposition of fumaric acids. Notably, the Na2CO3 particles are easily separated from graphene through a simple and green method, namely, washing with water at room temperature. Together with the reused characteristic of the recovered Na2CO3 particles, this approach is undoubtedly beneficial to the low-cost and clean synthesis of graphene. Benefiting from the framework structure, the as-synthesized graphene exhibits excellent performance in the supercapacitor. The specific capacitance of the GFs-modified electrode was calculated to be 242 F g(-1) at 0.5 A g(-1), which was almost twice that of the RGO-modified electrode (134 F g(-1)). More importantly, the GFs-modified electrode maintained 92.6% retention of its initial specific capacitance (from current density of 0.5 to 16 A g(-1)), which was much higher than that of 20 graphene-modified electrode. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 42 条
[1]  
Ahn H.S., 2013, SCI REP, V3
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Multi layered Nano-Architecture of Variable Sized Graphene Nanosheets for Enhanced Supercapacitor Electrode Performance [J].
Biswas, Sanjib ;
Drzal, Lawrence T. .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (08) :2293-2300
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates [J].
Caldwell, Joshua D. ;
Anderson, Travis J. ;
Culbertson, James C. ;
Jernigan, Glenn G. ;
Hobart, Karl D. ;
Kub, Fritz J. ;
Tadjer, Marko J. ;
Tedesco, Joseph L. ;
Hite, Jennifer K. ;
Mastro, Michael A. ;
Myers-Ward, Rachael L. ;
Eddy, Charles R., Jr. ;
Campbell, Paul M. ;
Gaskill, D. Kurt .
ACS NANO, 2010, 4 (02) :1108-1114
[6]   Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors [J].
Chen, Cheng-Meng ;
Zhang, Qiang ;
Huang, Chun-Hsien ;
Zhao, Xiao-Chen ;
Zhang, Bing-Sen ;
Kong, Qing-Qiang ;
Wang, Mao-Zhang ;
Yang, Yong-Gang ;
Cai, Rong ;
Su, Dang Sheng .
CHEMICAL COMMUNICATIONS, 2012, 48 (57) :7149-7151
[7]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/nmat3001, 10.1038/NMAT3001]
[8]   3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities [J].
Choi, Bong Gill ;
Yang, MinHo ;
Hong, Won Hi ;
Choi, Jang Wook ;
Huh, Yun Suk .
ACS NANO, 2012, 6 (05) :4020-4028
[9]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[10]   Face-to-face transfer of wafer-scale graphene films [J].
Gao, Libo ;
Ni, Guang-Xin ;
Liu, Yanpeng ;
Liu, Bo ;
Castro Neto, Antonio H. ;
Loh, Kian Ping .
NATURE, 2014, 505 (7482) :190-194