Stochastic representation for anisotropic permeability tensor random fields

被引:18
作者
Guilleminot, Johann [1 ]
Soize, Christian [1 ]
Ghanem, Roger G. [2 ]
机构
[1] Univ Paris Est, MSME CNRS UMR8208, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, France
[2] Univ So Calif, Los Angeles, CA 90089 USA
关键词
transport properties; random media; probabilistic methods; random field; permeability tensor; VALUED RANDOM-FIELDS; RANDOM UNCERTAINTIES; CHAOS REPRESENTATIONS; INFORMATION-THEORY; IDENTIFICATION; SYSTEMS; MEDIA; MODEL; SIZE;
D O I
10.1002/nag.1081
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In this paper, we introduce a novel stochastic model for the permeability tensor associated with stationary random porous media. In the light of recent works on mesoscale modeling of permeability, we first discuss the physical interpretation of the permeability tensor randomness. Subsequently, we propose a nonparametric prior probabilistic model for non-Gaussian permeability tensor random fields, making use of the information theory and a maximum entropy procedure, and provide a physical interpretation of the model parameters. Finally, we demonstrate the capability of the considered class of random fields to generate higher levels of statistical fluctuations for selected stochastic principal permeabilities. This unique flexibility offered by the parameterization of the model opens up many new possibilities for both forward simulations (e.g. for uncertainty propagation in predictive simulations) and stochastic inverse problem solving. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1592 / 1608
页数:17
相关论文
共 39 条
  • [1] [Anonymous], 2006, Elements of Information Theory
  • [2] [Anonymous], 2001, Stochastic Methods for Flow in Porous Media: Coping with Uncertainties
  • [3] [Anonymous], 2007, Multiscale Modeling: A Bayesian Perspective, DOI 10.1007/978-0-387-70898-0_11
  • [4] [Anonymous], 2003, APPL STOCHASTIC HYDR
  • [5] A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data
    Babuska, Ivo
    Nobile, Fabio
    Tempone, Raul
    [J]. SIAM REVIEW, 2010, 52 (02) : 317 - 355
  • [6] Bowman AW., 1997, Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations, Vvol. 18
  • [7] Carman C. P., 1937, Trans. Inst. Chem. Eng., V15, P150, DOI DOI 10.1016/S0263-8762(97)80003-2
  • [8] Maximum likelihood estimation of stochastic chaos representations from experimental data
    Desceliers, Christophe
    Ghanem, Roger
    Soize, Christian
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 66 (06) : 978 - 1001
  • [9] On the size of representative volume element for Darcy law in random media
    Du, X.
    Ostoja-Starzewski, M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2074): : 2949 - 2963
  • [10] Probabilistic characterization of transport in heterogeneous media
    Ghanem, R
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 158 (3-4) : 199 - 220