Discussion and challenges concerning the elaboration of a dissolution reaction mechanism

被引:8
作者
Chagas-Almeida, T. [1 ,2 ]
Barcia, O. E. [3 ]
Moreira, R. M. [1 ]
Bandeira, M. C. E. [1 ]
Mattos, O. R. [1 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, Lab Ensaios Nao Destrut Corrosao & Soldagem LNDC, BR-21941596 Rio de Janeiro, RJ, Brazil
[2] UFF, Escola Engn Ind Met Volta Redonda, BR-27255125 Volta Redonda, RJ, Brazil
[3] Univ Fed Rio de Janeiro, IQ, Dept Fis Quim, BR-21941909 Rio de Janeiro, RJ, Brazil
关键词
Mechanism; Tafel slope; Electrochemical impedance; Electrohydrodynamic impedance; IRON-CHROMIUM-ALLOYS; ANODIC-DISSOLUTION; ELECTRODE IMPEDANCES; FARADAIC IMPEDANCES; CORROSION RATE; KINETICS; CO2; FE;
D O I
10.1016/j.electacta.2019.02.036
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper presents a discussion of the particularities and challenges involved in the elaboration of reaction mechanisms. The use of steady state techniques to establish reaction models is critically analysed. Indeed, this paper shows that the same Tafel slope may be associated with different mechanisms; therefore, the Tafel slope cannot be used by itself to determine a specific mechanism with reasonable certainty. Furthermore, a critical analysis of electrochemical methods frequently used to determine corrosion rate, such as the Tafel Slope and LPR, shows the necessity of knowing the mechanisms of reactions beforehand to avoid mistakes in corrosion rate predictions. Reaction mechanisms must be established using both steady state and transient techniques. Finally, in cases where the kinetics are controlled by mass transport, electrohydrodynamic impedance emerges as a very useful tool, whose use is exemplified here by copper electrodissolution in sulphate medium. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 26 条
[1]  
Almeida T.C., 2017, Corrosion Science, V129, P146, DOI DOI 10.2016/J.CORSCI.2018.2002.2004
[2]   Modelling of the passivation mechanism of Fe-Cr binary alloys from ac impedance and frequency resolved rrde .1. Behaviour of Fe-Cr alloys in 0.5 M H2SO4 [J].
Annergren, I ;
Keddam, M ;
Takenouti, H ;
Thierry, D .
ELECTROCHIMICA ACTA, 1996, 41 (7-8) :1121-1135
[3]   THE ROLE OF CHLORIDE AND SULFATE ANIONS IN THE IRON DISSOLUTION MECHANISM STUDIED BY IMPEDANCE MEASUREMENTS [J].
BARCIA, OE ;
MATTOS, OR .
ELECTROCHIMICA ACTA, 1990, 35 (06) :1003-1009
[4]  
Bard A. J., 2001, ELECTROCHEMICAL METH
[5]   NEW DATA FROM IMPEDANCE MEASUREMENTS CONCERNING ANODIC-DISSOLUTION OF IRON IN ACIDIC SULFURIC MEDIA [J].
BECHET, B ;
EPELBOIN, I ;
KEDDAM, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1977, 76 (01) :129-134
[6]  
Bockris J.O.M., 1961, ELECTROCHIM ACTA, V4, P325, DOI [10.1016/0013-4686(61)80026-1, DOI 10.1016/0013-4686(61)80026-1]
[7]   Corrosion rate of iron and iron-chromium alloys in CO2 medium [J].
Carvalho, DS ;
Joia, CJB ;
Mattos, OR .
CORROSION SCIENCE, 2005, 47 (12) :2974-2986
[8]   COPPER ELECTRODISSOLUTION MECHANISM IN A 1 M SULFATE MEDIUM [J].
CORDEIRO, GGO ;
BARCIA, OE ;
MATTOS, OR .
ELECTROCHIMICA ACTA, 1993, 38 (2-3) :319-324
[9]   THEORETICAL TREATMENT OF KINETICS OF IRON DISSOLUTION AND PASSIVATION [J].
ELMILIGY, AA ;
GEANA, D ;
LORENZ, WJ .
ELECTROCHIMICA ACTA, 1975, 20 (04) :273-281
[10]   FARADAIC IMPEDANCES - DIFFUSION IMPEDANCE AND REACTION IMPEDANCE [J].
EPELBOIN, I .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1970, 117 (08) :1052-&