Early triage of critically ill COVID-19 patients using deep learning

被引:200
作者
Liang, Wenhua [1 ,2 ]
Yao, Jianhua [3 ]
Chen, Ailan [1 ,2 ,4 ]
Lv, Qingquan [4 ]
Zanin, Mark [5 ]
Liu, Jun [1 ,2 ,6 ]
Wong, SookSan [1 ,2 ]
Li, Yimin [7 ]
Lu, Jiatao [4 ]
Liang, Hengrui [1 ,2 ,6 ]
Chen, Guoqiang [8 ]
Guo, Haiyan [8 ]
Guo, Jun [9 ]
Zhou, Rong [1 ,2 ]
Ou, Limin [1 ,2 ]
Zhou, Niyun [3 ]
Chen, Hanbo [3 ]
Yang, Fan [3 ]
Han, Xiao [3 ]
Huan, Wenjing [10 ]
Tang, Weimin [10 ]
Guan, Weijie [1 ,2 ]
Chen, Zisheng [1 ,2 ,11 ]
Zhao, Yi [1 ,2 ]
Sang, Ling [1 ,2 ]
Xu, Yuanda [7 ]
Wang, Wei [6 ]
Li, Shiyue [1 ,2 ]
Lu, Ligong [12 ]
Zhang, Nuofu [1 ,2 ]
Zhong, Nanshan [1 ,2 ]
Huang, Junzhou [3 ]
He, Jianxing [1 ,2 ]
机构
[1] Guangzhou Med Univ, Affiliated Hosp 1, China State Key Lab Resp Dis, Guangzhou, Peoples R China
[2] Guangzhou Med Univ, Affiliated Hosp 1, Natl Clin Res Ctr Resp Dis, Guangzhou, Peoples R China
[3] Tencent AI Lab, Shenzhen, Peoples R China
[4] Hankou Hosp, Wuhan, Peoples R China
[5] Univ Hong Kong, Sch Publ Hlth, Hong Kong, Peoples R China
[6] Guangzhou Med Univ, Dept Thorac Surg, Affiliated Hosp 1, Guangzhou, Peoples R China
[7] Guangzhou Med Univ, Dept Intens Care Unit, Affiliated Hosp 1, Guangzhou, Peoples R China
[8] Foshan Hosp, Foshan, Peoples R China
[9] Daye Hosp, Wuhan, Hubei, Peoples R China
[10] Tencent Healthcare, Shenzhen, Peoples R China
[11] Guangzhou Med Univ, Dept Resp Dis, Affiliated Hosp 6, Guangzhou, Peoples R China
[12] Zhuhai People Hosp, Zhuhai, Peoples R China
基金
美国国家科学基金会;
关键词
CORONAVIRUS; CANCER; SARS;
D O I
10.1038/s41467-020-17280-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The sudden deterioration of patients with novel coronavirus disease 2019 (COVID-19) into critical illness is of major concern. It is imperative to identify these patients early. We show that a deep learning-based survival model can predict the risk of COVID-19 patients developing critical illness based on clinical characteristics at admission. We develop this model using a cohort of 1590 patients from 575 medical centers, with internal validation performance of concordance index 0.894 We further validate the model on three separate cohorts from Wuhan, Hubei and Guangdong provinces consisting of 1393 patients with concordance indexes of 0.890, 0.852 and 0.967 respectively. This model is used to create an online calculation tool designed for patient triage at admission to identify patients at risk of severe illness, ensuring that patients at greatest risk of severe illness receive appropriate care as early as possible and allow for effective allocation of health resources. The sudden deterioration of patients with novel coronavirus disease 2019 (COVID-19) into critical illness is of major concern and early assessment would be vital. Here, the authors show that a deep learning-based survival model can predict the risk of COVID-19 patients developing critical illness based on clinical characteristics at admission.
引用
收藏
页数:7
相关论文
共 18 条
[1]  
Bergstra J., 2013, P 30 INT C MACH LEAR, V28
[2]   Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area [J].
Booth, CM ;
Matukas, LM ;
Tomlinson, GA ;
Rachlis, AR ;
Rose, DB ;
Dwosh, HA ;
Walmsley, SL ;
Mazzulli, T ;
Avendano, M ;
Derkach, P ;
Ephtimios, IE ;
Kitai, I ;
Mederski, BD ;
Shadowitz, SB ;
Gold, WL ;
Hawryluck, LA ;
Rea, E ;
Chenkin, JS ;
Cescon, DW ;
Poutanen, SM ;
Detsky, AS .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2003, 289 (21) :2801-2809
[3]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[4]  
COX DR, 1972, J R STAT SOC B, V34, P187
[5]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[6]  
Guan WJ, 2020, EUR RESPIR J, V55, DOI [10.1183/13993003.00547-2020, 10.1183/13993003.00597-2020, 10.1371/journal.pone.0240308]
[7]  
Guan WJ, 2020, NEW ENGL J MED, V382, P1861, DOI 10.1056/NEJMc2005203
[8]   Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis [J].
Hamming, I ;
Timens, W ;
Bulthuis, MLC ;
Lely, AT ;
Navis, GJ ;
van Goor, H .
JOURNAL OF PATHOLOGY, 2004, 203 (02) :631-637
[9]   How to build and interpret a nomogram for cancer prognosis [J].
Iasonos, Alexia ;
Schrag, Deborah ;
Raj, Ganesh V. ;
Panageas, Katherine S. .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (08) :1364-1370
[10]   DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network [J].
Katzman, Jared L. ;
Shaham, Uri ;
Cloninger, Alexander ;
Bates, Jonathan ;
Jiang, Tingting ;
Kluger, Yuval .
BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18