Spectral Methods for Multiscale Stochastic Differential Equations

被引:17
作者
Abdulle, A. [1 ]
Pavliotis, G. A. [1 ]
Vaes, U. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Math Sect, Lausanne, Switzerland
[2] Imperial Coll London, Dept Math, London, England
基金
英国工程与自然科学研究理事会;
关键词
spectral methods for differential equations; Hermite spectral methods; singularly perturbed stochastic differential equation; multiscale methods; homogenization theory; stochastic partial differential equations; DIFFUSION-APPROXIMATION; ASYMPTOTIC ANALYSIS; POISSON-EQUATION; COEFFICIENTS; SOBOLEV; SPACES;
D O I
10.1137/16M1094117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a new method for the solution of multiscale stochastic differential equations at the diffusive time scale. In contrast to averaging-based methods, e.g., the heterogeneous multiscale method (HMM) or the equation-free method, which rely on Monte Carlo simulations, in this paper we introduce a new numerical methodology that is based on a spectral method. In particular, we use an expansion in Hermite functions to approximate the solution of an appropriate Poisson equation, which is used in order to calculate the coefficients of the homogenized equation. Spectral convergence is proved under suitable assumptions. Numerical experiments corroborate the theory and illustrate the performance of the method. A comparison with the HMM and an application to singularly perturbed stochastic PDEs are also presented.
引用
收藏
页码:720 / 761
页数:42
相关论文
共 63 条
[1]   Numerical methods for stochastic partial differential equations with multiple scales [J].
Abdulle, A. ;
Pavliotis, G. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) :2482-2497
[2]   The heterogeneous multiscale method [J].
Abdulle, Assyr ;
Weinan, E. ;
Engquist, Bjoern ;
Vanden-Eijnden, Eric .
ACTA NUMERICA, 2012, 21 :1-87
[3]  
Agmon Shmuel., 1982, Mathematical Notes, V29
[4]  
Andrews G.E., 1999, Encycl. Math. Appl., V71
[5]  
[Anonymous], 2015, MATH SURVEYS MONOGR
[6]  
Arnold A, 2007, COMMUN MATH SCI, V5, P971
[8]   Multiscale analysis for stochastic partial differential equations with quadratic nonlinearities [J].
Bloemker, D. ;
Hairer, M. ;
Pavliotis, G. A. .
NONLINEARITY, 2007, 20 (07) :1721-1744
[9]   Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations [J].
Bonnaillie-Noel, V. ;
Carrillo, J. A. ;
Goudon, T. ;
Pavliotis, G. A. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) :1536-1569
[10]   ASYMPTOTIC COEFFICIENTS OF HERMITE FUNCTION SERIES [J].
BOYD, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 54 (03) :382-410