Regge analysis of the ππ scattering amplitude

被引:112
作者
Caprini, I. [1 ]
Colangelo, G. [2 ]
Leutwyler, H. [2 ]
机构
[1] Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele 077125, Romania
[2] Univ Bern, Albert Einstein Ctr Fundamental Phys, Inst Theoret Phys, CH-3012 Bern, Switzerland
来源
EUROPEAN PHYSICAL JOURNAL C | 2012年 / 72卷 / 02期
基金
瑞士国家科学基金会;
关键词
ELASTIC-SCATTERING; SUM-RULES; ENERGY; MODEL; QCD; CONSTRUCTION; TRAJECTORIES; PSEUDOSCALAR; RESONANCE; EQUATION;
D O I
10.1140/epjc/s10052-012-1860-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The theoretical predictions for the subtraction constants lead to a very accurate dispersive representation of the pi pi scattering amplitude below 0.8 GeV. The extension of this representation up to the maximum energy of validity of the Roy equations (1.15 GeV) requires a more precise input at high energies. In this paper we determine the trajectories and residues of the leading Regge contributions to the pi pi amplitude (Pomeron, f and rho), using factorization, phenomenological parametrizations of the pi N and NN total cross sections at high energy, and a set of sum rules which connect the high and low energy properties of pi pi scattering. We find that nonleading Regge terms are necessary in order to achieve a smooth transition from the partial waves to the Regge representation at or below 2 GeV. We obtain thus a Regge representation consistent both with the experimental information at high energies and the Roy equations for the partial waves with l <= 4. The uncertainties in our result for the Regge parameters are sizable, but in the solutions of the Roy equations these only manifest themselves above the K (K) over bar threshold.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 115 条
[1]   STUDY OF PI-PI- SCATTERING IN PI-N INTERACTIONS AT HIGH-ENERGIES [J].
ABRAMOWICZ, H ;
GORSKI, M ;
SINAPIUS, G ;
WROBLEWSKI, A ;
ZIEMINSKI, A ;
LUBATTI, HJ ;
MORIYASU, K ;
REES, CD ;
KISIELEWSKA, D ;
FIGIEL, J ;
SUSZYCKI, L ;
SLIWA, K ;
KO, W ;
PEARSON, JS ;
YAGER, P .
NUCLEAR PHYSICS B, 1980, 166 (01) :62-72
[2]   Analytical ππ scattering amplitude and the light scalars [J].
Achasov, N. N. ;
Kiselev, A. V. .
PHYSICAL REVIEW D, 2011, 83 (05)
[3]   Lightest scalar in the SUL(2) x SUR(2) linear σ model [J].
Achasov, N. N. ;
Shestakov, G. N. .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)
[4]  
Achasov N.N., ARXIV10095551
[5]   ππ scattering S wave from the data on the reaction π-p→π0π0n -: art. no. 114018 [J].
Achasov, NN ;
Shestakov, GN .
PHYSICAL REVIEW D, 2003, 67 (11)
[6]   Determination of ππ scattering lengths from measurement of π+π- atom lifetime [J].
Adeva, B. ;
Afanasyev, L. ;
Benayoun, M. ;
Benelli, A. ;
Berka, Z. ;
Brekhovskikh, V. ;
Caragheorgheopol, G. ;
Cechak, T. ;
Chiba, M. ;
Chliapnikov, P. V. ;
Ciocarlan, C. ;
Constantinescu, S. ;
Costantini, S. ;
Curceanu , C. ;
Doskarova, P. ;
Dreossi, D. ;
Drijard, D. ;
Dudarev, A. ;
Ferro-Luzzi, M. ;
Fungueirino Pazos, J. L. ;
Gallas Torreira, M. ;
Gerndt, J. ;
Gianotti, P. ;
Goldin, D. ;
Gomez, F. ;
Gorin, A. ;
Gorchakov, O. ;
Guaraldo, C. ;
Gugiu, M. ;
Hansroul, M. ;
Hons, Z. ;
Hosek, R. ;
Iliescu, M. ;
Karpukhin, V. ;
Kluson, J. ;
Kobayashi, M. ;
Kokkas, P. ;
Komarov, V. ;
Kruglov, V. ;
Kruglova, L. ;
Kulikov, A. ;
Kuptsov, A. ;
Kuroda, K. I. ;
Lamberto, A. ;
Lanaro, A. ;
Lapshin, V. ;
Lednicky, R. ;
Leruste, P. ;
Sandri, P. Levi ;
Lopez Aguera, A. .
PHYSICS LETTERS B, 2011, 704 (1-2) :24-29
[7]   Roy equation analysis of ππ scattering [J].
Ananthanarayan, B ;
Colangelo, G ;
Gasser, J ;
Leutwyler, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 353 (04) :207-279
[8]  
Anisovich A.V., ARXIV11055923
[9]   FINAL-STATE INTERACTIONS IN 3 MESON SYSTEMS - ANALYSIS OF DATA ON (P)OVER-BAR-P-]PI-0-PI-0-PI-0 AND ETA-ETA-PI-0 AT REST [J].
ANISOVICH, VV ;
BUGG, DV ;
SARANTSEV, AV ;
ZOU, BS .
PHYSICAL REVIEW D, 1994, 50 (03) :1972-1991
[10]  
[Anonymous], 1997, Quantum chromodynamics and the pomeron