On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition

被引:7
作者
Wei, Zhou [1 ]
Ali, M. Montaz [2 ]
Xu, Liang [3 ]
Zeng, Bo [3 ]
Yao, Jen-Chih [4 ,5 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Univ Pittsburgh, Dept Ind Engn, Pittsburgh, PA 15261 USA
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[5] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40402, Taiwan
基金
美国国家科学基金会;
关键词
Mixed-integer nonlinear programming; Outer approximation; Generalized Benders decomposition; Subgradient; Master program; 90C11; 90C25; 90C30; CUTTING-PLANE METHOD;
D O I
10.1007/s10957-019-01499-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we mainly study nonsmooth mixed-integer nonlinear programming problems and solution algorithms by outer approximation and generalized Benders decomposition. Outer approximation and generalized Benders algorithms are provided to solve these problems with nonsmooth convex functions and with conic constraint, respectively. We illustrate these two algorithms by providing detailed procedure of solving several examples. The numerical examples show that outer approximation and generalized Benders decomposition provide a feasible alternative for solving such problems without differentiability.
引用
收藏
页码:840 / 863
页数:24
相关论文
共 50 条
  • [31] Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming
    Melo, Wendel
    Fampa, Marcia
    Raupp, Fernanda
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2014, 60 (02) : 373 - 389
  • [32] Integrating nonlinear branch-and-bound and outer approximation for convex Mixed Integer Nonlinear Programming
    Wendel Melo
    Marcia Fampa
    Fernanda Raupp
    [J]. Journal of Global Optimization, 2014, 60 : 373 - 389
  • [33] Sample average approximation for stochastic nonconvex mixed integer nonlinear programming via outer-approximation
    Can Li
    David E. Bernal
    Kevin C. Furman
    Marco A. Duran
    Ignacio E. Grossmann
    [J]. Optimization and Engineering, 2021, 22 : 1245 - 1273
  • [34] Global optimization of mixed-integer nonlinear (polynomial) programming problems: the Bernstein polynomial approach
    Patil, Bhagyesh V.
    Nataraj, P. S. V.
    Bhartiya, Sharad
    [J]. COMPUTING, 2012, 94 (2-4) : 325 - 343
  • [35] Hybrid improved sine cosine algorithm for mixed-integer nonlinear programming problems
    Haohao Song
    Jiquan Wang
    Zhiwen Cheng
    Tiezhu Chang
    [J]. Soft Computing, 2023, 27 : 14909 - 14933
  • [36] Solving mixed-integer nonlinear programmes using adaptively refined mixed-integer linear programmes
    Burlacu, Robert
    Geissler, Bjoern
    Schewe, Lars
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (01) : 37 - 64
  • [37] Exploiting integrality in the global optimization of mixed-integer nonlinear programming problems with BARON
    Kilinc, Mustafa R.
    Sahinidis, Nikolaos V.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (03) : 540 - 562
  • [38] Global optimization of signomial mixed-integer nonlinear programming problems with free variables
    Jung-Fa Tsai
    Ming-Hua Lin
    [J]. Journal of Global Optimization, 2008, 42 : 39 - 49
  • [39] Hybrid improved sine cosine algorithm for mixed-integer nonlinear programming problems
    Song, Haohao
    Wang, Jiquan
    Cheng, Zhiwen
    Chang, Tiezhu
    [J]. SOFT COMPUTING, 2023, 27 (20) : 14909 - 14933
  • [40] An Improved Estimation of Distribution Algorithm for Mixed-Integer Nonlinear Programming Problems: EDAIImv
    Molina-Perez, Daniel
    Mezura-Montes, Efren
    Portilla-Flores, Edgar Alfredo
    Vega-Alvarado, Eduardo
    [J]. COMPUTACION Y SISTEMAS, 2023, 27 (01): : 163 - 172