On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition

被引:7
作者
Wei, Zhou [1 ]
Ali, M. Montaz [2 ]
Xu, Liang [3 ]
Zeng, Bo [3 ]
Yao, Jen-Chih [4 ,5 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Univ Pittsburgh, Dept Ind Engn, Pittsburgh, PA 15261 USA
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[5] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40402, Taiwan
基金
美国国家科学基金会;
关键词
Mixed-integer nonlinear programming; Outer approximation; Generalized Benders decomposition; Subgradient; Master program; 90C11; 90C25; 90C30; CUTTING-PLANE METHOD;
D O I
10.1007/s10957-019-01499-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we mainly study nonsmooth mixed-integer nonlinear programming problems and solution algorithms by outer approximation and generalized Benders decomposition. Outer approximation and generalized Benders algorithms are provided to solve these problems with nonsmooth convex functions and with conic constraint, respectively. We illustrate these two algorithms by providing detailed procedure of solving several examples. The numerical examples show that outer approximation and generalized Benders decomposition provide a feasible alternative for solving such problems without differentiability.
引用
收藏
页码:840 / 863
页数:24
相关论文
共 50 条
  • [21] Solving multistatic sonar location problems with mixed-integer programming
    Fuegenschuh, Armin R.
    Craparo, Emily M.
    Karatas, Mumtaz
    Buttrey, Samuel E.
    OPTIMIZATION AND ENGINEERING, 2020, 21 (01) : 273 - 303
  • [22] Solving multistatic sonar location problems with mixed-integer programming
    Armin R. Fügenschuh
    Emily M. Craparo
    Mumtaz Karatas
    Samuel E. Buttrey
    Optimization and Engineering, 2020, 21 : 273 - 303
  • [23] An improved Estimation of Distribution Algorithm for Solving Constrained Mixed-Integer Nonlinear Programming Problems
    Molina Perez, Daniel
    Alfredo Portilla-Flores, Edgar
    Mezura-Montes, Efren
    Vega-Alvarado, Eduardo
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [24] Review of Mixed-Integer Nonlinear and Generalized Disjunctive Programming Methods
    Trespalacios, Francisco
    Grossmann, Ignacio E.
    CHEMIE INGENIEUR TECHNIK, 2014, 86 (07) : 991 - 1012
  • [25] Sample average approximation for stochastic nonconvex mixed integer nonlinear programming via outer-approximation
    Li, Can
    Bernal, David E.
    Furman, Kevin C.
    Duran, Marco A.
    Grossmann, Ignacio E.
    OPTIMIZATION AND ENGINEERING, 2021, 22 (03) : 1245 - 1273
  • [26] Outer approximation for global optimization of mixed-integer quadratic bilevel problems
    Thomas Kleinert
    Veronika Grimm
    Martin Schmidt
    Mathematical Programming, 2021, 188 : 461 - 521
  • [27] Outer approximation for global optimization of mixed-integer quadratic bilevel problems
    Kleinert, Thomas
    Grimm, Veronika
    Schmidt, Martin
    MATHEMATICAL PROGRAMMING, 2021, 188 (02) : 461 - 521
  • [28] An Efficient Modified Particle Swarm Optimization Algorithm for Solving Mixed-Integer Nonlinear Programming Problems
    Ying Sun
    Yuelin Gao
    International Journal of Computational Intelligence Systems, 2019, 12 : 530 - 543
  • [29] An Efficient Modified Particle Swarm Optimization Algorithm for Solving Mixed-Integer Nonlinear Programming Problems
    Sun, Ying
    Gao, Yuelin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (02) : 530 - 543
  • [30] Improved differential evolution algorithms for solving mixed-integer nonlinear programming
    Liu, Mingguang
    PROCEEDINGS OF THE 2007 CONFERENCE ON SYSTEMS SCIENCE, MANAGEMENT SCIENCE AND SYSTEM DYNAMICS: SUSTAINABLE DEVELOPMENT AND COMPLEX SYSTEMS, VOLS 1-10, 2007, : 1399 - 1404