On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition

被引:7
|
作者
Wei, Zhou [1 ]
Ali, M. Montaz [2 ]
Xu, Liang [3 ]
Zeng, Bo [3 ]
Yao, Jen-Chih [4 ,5 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Univ Pittsburgh, Dept Ind Engn, Pittsburgh, PA 15261 USA
[4] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[5] China Med Univ, China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40402, Taiwan
基金
美国国家科学基金会;
关键词
Mixed-integer nonlinear programming; Outer approximation; Generalized Benders decomposition; Subgradient; Master program; 90C11; 90C25; 90C30; CUTTING-PLANE METHOD;
D O I
10.1007/s10957-019-01499-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we mainly study nonsmooth mixed-integer nonlinear programming problems and solution algorithms by outer approximation and generalized Benders decomposition. Outer approximation and generalized Benders algorithms are provided to solve these problems with nonsmooth convex functions and with conic constraint, respectively. We illustrate these two algorithms by providing detailed procedure of solving several examples. The numerical examples show that outer approximation and generalized Benders decomposition provide a feasible alternative for solving such problems without differentiability.
引用
收藏
页码:840 / 863
页数:24
相关论文
共 50 条
  • [1] On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition
    Zhou Wei
    M. Montaz Ali
    Liang Xu
    Bo Zeng
    Jen-Chih Yao
    Journal of Optimization Theory and Applications, 2019, 181 : 840 - 863
  • [2] Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems
    Ville-Pekka Eronen
    Jan Kronqvist
    Tapio Westerlund
    Marko M. Mäkelä
    Napsu Karmitsa
    Journal of Global Optimization, 2017, 69 : 443 - 459
  • [3] Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems
    Eronen, Ville-Pekka
    Kronqvist, Jan
    Westerlund, Tapio
    Makela, Marko M.
    Karmitsa, Napsu
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 69 (02) : 443 - 459
  • [4] SOLVING MIXED-INTEGER NONLINEAR PROGRAMS BY OUTER APPROXIMATION
    FLETCHER, R
    LEYFFER, S
    MATHEMATICAL PROGRAMMING, 1994, 66 (03) : 327 - 349
  • [5] Neural benders decomposition for mixed-integer programming
    Monemi, Rahimeh Neamatian
    Gelareh, Shahin
    Maculan, Nelson
    Dai, Yu-Hong
    TOP, 2024,
  • [6] Outer approximation for generalized convex mixed-integer nonlinear robust optimization problems
    Kuchlbauer, Martina
    OPERATIONS RESEARCH LETTERS, 2025, 60
  • [7] The decomposition-based outer approximation algorithm for convex mixed-integer nonlinear programming
    Muts, Pavlo
    Nowak, Ivo
    Hendrix, Eligius M. T.
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 77 (01) : 75 - 96
  • [8] The decomposition-based outer approximation algorithm for convex mixed-integer nonlinear programming
    Pavlo Muts
    Ivo Nowak
    Eligius M. T. Hendrix
    Journal of Global Optimization, 2020, 77 : 75 - 96
  • [9] SOLVING MIXED-INTEGER SECOND ORDER CONE PROGRAMS BY GENERALIZED BENDERS DECOMPOSITION
    Wei, Zhou
    Chen, Liang
    Dai, Yu-hong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (04) : 869 - 888
  • [10] Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs
    Li, Xiang
    Tomasgard, Asgeir
    Barton, Paul I.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (03) : 425 - 454