Finding missed cases of familial hypercholesterolemia in health systems using machine learning

被引:62
作者
Banda, Juan M. [1 ,2 ]
Sarraju, Ashish [3 ]
Abbasi, Fahim [3 ]
Parizo, Justin [3 ]
Pariani, Mitchel [3 ]
Ison, Hannah [3 ]
Briskin, Elinor [3 ]
Wand, Hannah [3 ]
Dubois, Sebastien [1 ]
Jung, Kenneth [1 ]
Myers, Seth A. [4 ]
Rader, Daniel J. [5 ,6 ]
Leader, Joseph B. [7 ]
Murray, Michael F. [8 ]
Myers, Kelly D. [4 ,6 ]
Wilemon, Katherine [6 ]
Shah, Nigam H. [1 ]
Knowles, Joshua W. [3 ,6 ,9 ]
机构
[1] Stanford Univ, Ctr Biomed Informat Res, Stanford, CA 94305 USA
[2] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[3] Stanford Univ, Cardiovasc Med & Cardiovasc Inst, Stanford, CA 94305 USA
[4] Atomo Inc, Austin, TX USA
[5] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] FH Fdn, Pasadena, CA 91106 USA
[7] Geisinger Hlth Syst, Genom Med Inst, Forty Ft, PA USA
[8] Yale Univ, Ctr Genom Hlth, New Haven, CT USA
[9] Stanford Diabet Res Ctr, Stanford, CA 94305 USA
关键词
SAVANNA CHOICE; IDENTIFICATION; FUTURE; ZOO;
D O I
10.1038/s41746-019-0101-5
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Familial hypercholesterolemia (FH) is an underdiagnosed dominant genetic condition affecting approximately 0.4% of the population and has up to a 20-fold increased risk of coronary artery disease if untreated. Simple screening strategies have false positive rates greater than 95%. As part of the FH Foundation's FIND FH initiative, we developed a classifier to identify potential FH patients using electronic health record (EHR) data at Stanford Health Care. We trained a random forest classifier using data from known patients (n = 197) and matched non-cases (n = 6590). Our classifier obtained a positive predictive value (PPV) of 0.88 and sensitivity of 0.75 on a held-out test-set. We evaluated the accuracy of the classifier's predictions by chart review of 100 patients at risk of FH not included in the original dataset. The classifier correctly flagged 84% of patients at the highest probability threshold, with decreasing performance as the threshold lowers. In external validation on 466 FH patients (236 with genetically proven FH) and 5000 matched non-cases from the Geisinger Healthcare System our FH classifier achieved a PPV of 0.85. Our EHR-derived FH classifier is effective in finding candidate patients for further FH screening. Such machine learning guided strategies can lead to effective identification of the highest risk patients for enhanced management strategies.
引用
收藏
页数:8
相关论文
共 39 条
  • [1] Genetic identification of familial hypercholesterolemia within a single US health care system
    Abul-Husn, Noura S.
    Manickam, Kandamurugu
    Jones, Laney K.
    Wright, Eric A.
    Hartzel, Dustin N.
    Gonzaga-Jauregui, Claudia
    O'Dushlaine, Colm
    Leader, Joseph B.
    Kirchner, H. Lester
    Lindbuchler, D'Andra M.
    Barr, Marci L.
    Giovanni, Monica A.
    Ritchie, Marylyn D.
    Overton, John D.
    Reid, Jeffrey G.
    Metpally, Raghu P. R.
    Wardeh, Amr H.
    Borecki, Ingrid B.
    Yancopoulos, George D.
    Baras, Aris
    Shuldiner, Alan R.
    Gottesman, Omri
    Ledbetter, David H.
    Carey, David J.
    Dewey, Frederick E.
    Murray, Michael F.
    [J]. SCIENCE, 2016, 354 (6319)
  • [2] DIAGNOSTIC-TESTS-2 - PREDICTIVE VALUES .4.
    ALTMAN, DG
    BLAND, JM
    [J]. BRITISH MEDICAL JOURNAL, 1994, 309 (6947) : 102 - 102
  • [3] Genetic causes of monogenic heterozygous familial hypercholesterolemia: A HuGE prevalence review
    Austin, MA
    Hutter, CM
    Zimmern, RL
    Humphries, SE
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2004, 160 (05) : 407 - 420
  • [4] Banda Juan M, 2017, AMIA Jt Summits Transl Sci Proc, V2017, P48
  • [5] Phenotype risk scores identify patients with unrecognized Mendelian disease patterns
    Bastarache, Lisa
    Hughey, Jacob J.
    Hebbring, Scott
    Marlo, Joy
    Zhao, Wanke
    Ho, Wanting T.
    Van Driest, Sara L.
    McGregor, Tracy L.
    Mosley, Jonathan D.
    Wells, Quinn S.
    Temple, Michael
    Ramirez, Andrea H.
    Carroll, Robert
    Osterman, Travis
    Edwards, Todd
    Ruderfer, Douglas
    Edwards, Digna R. Velez
    Hamid, Rizwan
    Cogan, Joy
    Glazer, Andrew
    Wei, Wei-Qi
    Feng, QiPing
    Brilliant, Murray
    Zhao, Zhizhuang J.
    Cox, Nancy J.
    Roden, Dan M.
    Denny, Joshua C.
    [J]. SCIENCE, 2018, 359 (6381) : 1233 - +
  • [6] Selection of individuals for genetic testing for familial hypercholesterolaemia: development and external validation of a prediction model for the presence of a mutation causing familial hypercholesterolaemia
    Besseling, Joost
    Reitsma, Johannes B.
    Gaudet, Daniel
    Brisson, Diane
    Kastelein, John J. P.
    Hovingh, G. Kees
    Hutten, Barbara A.
    [J]. EUROPEAN HEART JOURNAL, 2017, 38 (08) : 565 - +
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] A simple algorithm for identifying negated findings and diseases in discharge summaries
    Chapman, WW
    Bridewell, W
    Hanbury, P
    Cooper, GF
    Buchanan, BG
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2001, 34 (05) : 301 - 310
  • [9] Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia
    Civeira, F
    [J]. ATHEROSCLEROSIS, 2004, 173 (01) : 55 - 68
  • [10] Use and misuse of the receiver operating characteristic curve in risk prediction
    Cook, Nancy R.
    [J]. CIRCULATION, 2007, 115 (07) : 928 - 935