Brownian motion-induced water slip inside carbon nanotubes

被引:3
|
作者
Chen, Chao [1 ,2 ,3 ]
Shen, Luming [2 ]
Ma, Ming [4 ]
Liu, Jefferson Zhe [5 ]
Zheng, Quanshui [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
[2] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
[3] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
[4] UCL, Dept Chem, London Ctr Nanotechnol, London WC1H 0AJ, England
[5] Monash Univ, Dept Mech & Aerosp Engn, Clayton, Vic 3800, Australia
基金
美国国家科学基金会;
关键词
One-dimensional Brownian motion; Nanoscale flow; Liquid slip; Carbon nanotubes; Molecular dynamics; MOLECULAR-DYNAMICS; SIMULATIONS; TRANSPORT; SURFACES; FLOW;
D O I
10.1007/s10404-013-1247-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Molecular dynamics simulations are performed to understand the characteristics of the one-dimensional Brownian motion of water columns inside carbon nanotubes (CNTs) at room temperature. It is found that the probability of 2-10-nm-long water columns sliding a distance larger than the energy barrier period inside 2-5-nm-diameter CNTs is greater than 50 %. Moreover, a conservative estimation gives that the thermal fluctuation-induced driving force exceeds the upper bound of the sliding energy barrier for a water column shorter than 117 nm. These findings imply that although water molecules form layered structures near the CNT inner walls, there is no critical interfacial shear stress to conquer, and water could slip inside CNTs under any given pressure drop due to the thermal activation at room temperature.
引用
收藏
页码:305 / 313
页数:9
相关论文
共 50 条
  • [21] Curvature-Dependent Adsorption of Water Inside and Outside Armchair Carbon Nanotubes
    Lei, Shulai
    Paulus, Beate
    Li, Shujuan
    Schmidt, Burkhard
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (14) : 1313 - 1320
  • [22] Nanofluidic transport inside carbon nanotubes
    Kheirabadi, A. Moghimi
    Moosavi, A.
    Akbarzadeh, A. M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (06)
  • [23] Structure and Dynamics of Confined Water Inside Diphenylalanine Peptide Nanotubes
    Chen, Jinfeng
    Qiu, Zongyang
    Huang, Jing
    ACS OMEGA, 2023, 8 (45): : 42936 - 42950
  • [24] Meniscus Motion and Void Generation Inside Carbon Nanotubes
    Yamada, Yutaka
    Taguchi, Kanoko
    Ikuta, Tatsuya
    Horibe, Akihiko
    Takahashi, Koji
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (38) : 21910 - 21918
  • [25] Nanostructured water and carbon dioxide inside collapsing carbon nanotubes at high pressure
    Cui, Wenwen
    Cerqueira, Tiago F. T.
    Botti, Silvana
    Marques, Miguel A. L.
    San-Miguel, Alfonso
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (29) : 19926 - 19932
  • [26] Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes
    Agrawal, Kumar Varoon
    Shimizu, Steven
    Drahushuk, Lee W.
    Kilcoyne, Daniel
    Strano, Michael S.
    NATURE NANOTECHNOLOGY, 2017, 12 (03) : 267 - +
  • [27] Multiphase water flow inside carbon nanotubes
    Kotsalis, EM
    Walther, JH
    Koumoutsakos, P
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2004, 30 (7-8) : 995 - 1010
  • [28] Water transport through carbon nanotubes with defects
    Nicholls, W. D.
    Borg, M. K.
    Lockerby, D. A.
    Reese, J. M.
    MOLECULAR SIMULATION, 2012, 38 (10) : 781 - 785
  • [29] Water diffusion inside carbon nanotubes: mutual effects of surface and confinement
    Zheng, Yong-gang
    Ye, Hong-fei
    Zhang, Zhong-qiang
    Zhang, Hong-wu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (02) : 964 - 971
  • [30] Modeling slip and flow enhancement of water in carbon nanotubes
    Kannam, Sridhar Kumar
    Daivis, Peter J.
    Todd, B. D.
    MRS BULLETIN, 2017, 42 (04) : 283 - 288