BLOW-UP FOR A SEMILINEAR PARABOLIC EQUATION WITH NONLINEAR MEMORY AND NONLOCAL NONLINEAR BOUNDARY

被引:9
|
作者
Liu, Dengming [1 ]
Mu, Chunlai [2 ]
Ahmed, Iftikhar [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Computat Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2013年 / 17卷 / 04期
关键词
Semilinear parabolic equation; Global existence; Blow-up; Nonlinear memory; Nonlocal nonlinear boundary condition; REACTION-DIFFUSION EQUATION; POSITIVE SOLUTIONS; COMPARISON PRINCIPLE; GLOBAL EXISTENCE; HEAT-EQUATION; SYSTEMS;
D O I
10.11650/tjm.17.2013.2648
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a semilinear parabolic equation ut = Delta u + integral(t)(0) u(p)ds - ku(q), x is an element of Omega, t > 0 with boundary condition u (x, t) = integral(Omega) f (x, y) u(l) (y, t)dy for x is an element of partial derivative Omega, t > 0, where p, q, l, k > 0. The blow-up criteria and the blow-up rate are obtained under some appropriate assumptions.
引用
收藏
页码:1353 / 1370
页数:18
相关论文
共 50 条