BLOW-UP FOR A SEMILINEAR PARABOLIC EQUATION WITH NONLINEAR MEMORY AND NONLOCAL NONLINEAR BOUNDARY

被引:10
作者
Liu, Dengming [1 ]
Mu, Chunlai [2 ]
Ahmed, Iftikhar [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Computat Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2013年 / 17卷 / 04期
关键词
Semilinear parabolic equation; Global existence; Blow-up; Nonlinear memory; Nonlocal nonlinear boundary condition; REACTION-DIFFUSION EQUATION; POSITIVE SOLUTIONS; COMPARISON PRINCIPLE; GLOBAL EXISTENCE; HEAT-EQUATION; SYSTEMS;
D O I
10.11650/tjm.17.2013.2648
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a semilinear parabolic equation ut = Delta u + integral(t)(0) u(p)ds - ku(q), x is an element of Omega, t > 0 with boundary condition u (x, t) = integral(Omega) f (x, y) u(l) (y, t)dy for x is an element of partial derivative Omega, t > 0, where p, q, l, k > 0. The blow-up criteria and the blow-up rate are obtained under some appropriate assumptions.
引用
收藏
页码:1353 / 1370
页数:18
相关论文
共 32 条
[1]  
[Anonymous], 2009, ADV MATH SCI APPL, V19, P39
[2]   BLOW-UP OF SOLUTIONS OF PARABOLIC EQUATIONS WITH NONLINEAR MEMORY [J].
BELLOUT, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (01) :42-68
[3]  
Day W.A., 1985, HEAT CONDUCTION LINE, DOI [10.1007/978-1-4613-9555-3, DOI 10.1007/978-1-4613-9555-3]
[5]   COMPARISON PRINCIPLE FOR SOME NONLOCAL PROBLEMS [J].
DENG, K .
QUARTERLY OF APPLIED MATHEMATICS, 1992, 50 (03) :517-522
[6]   Global existence and blow-up analysis to a degenerate reaction-diffusion system with nonlinear memory [J].
Du, Lili ;
Mu, Chunlai .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (02) :303-315
[7]   A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
El Soufi, A. ;
Jazar, M. ;
Monneau, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :17-39
[8]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[10]  
Friedman A, 1983, PARTIAL DIFFERENTIAL