Comprehensive functional profiling of long non-coding RNAs through a novel pan-cancer integration approach and modular analysis of their protein-coding gene association networks

被引:11
作者
Walters, Kevin [1 ]
Sarsenov, Radmir [2 ]
Too, Wen Siong [2 ]
Hare, Roseanna K. [3 ]
Paterson, Ian C. [4 ]
Lambert, Daniel W. [5 ]
Brown, Stephen [2 ]
Bradford, James R. [6 ,7 ]
机构
[1] Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
[2] Univ Sheffield, Dept Biomed Sci, SRSF, Sheffield, S Yorkshire, England
[3] Univ Sheffield, Dept Biomed Sci, Sheffield, S Yorkshire, England
[4] Univ Malaya, Dept Oral & Craniofacial Sci, Fac Dent, Kuala Lumpur, Malaysia
[5] Univ Sheffield, Sheffield Inst Nucle Acids SInFoNiA, Integrated Biosci, Sch Clin Dent, Sheffield, S Yorkshire, England
[6] Univ Sheffield, Sheffield Inst Nucle Acids SInFoNiA, Dept Oncol & Metab, Sheffield, S Yorkshire, England
[7] Almac Diagnost Serv, Craigavon, North Ireland
关键词
lncRNA; Functional profiling; Genes networks; Cancer; Epithelial-mesenchymal transition; Extracellular matrix; Tumour microenvironment; TGF-BETA; COEXPRESSION NETWORK; ENRICHMENT ANALYSIS; REVEALS; FIBROBLASTS; METASTASIS; EXPRESSION; LNCRNAS; HOTAIR; TUMOR;
D O I
10.1186/s12864-019-5850-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundLong non-coding RNAs (lncRNAs) are emerging as crucial regulators of cellular processes in diseases such as cancer, although the functions of most remain poorly understood. To address this, here we apply a novel strategy to integrate gene expression profiles across 32 cancer types, and cluster human lncRNAs based on their pan-cancer protein-coding gene associations. By doing so, we derive 16 lncRNA modules whose unique properties allow simultaneous inference of function, disease specificity and regulation for over 800 lncRNAs.ResultsRemarkably, modules could be grouped into just four functional themes: transcription regulation, immunological, extracellular, and neurological, with module generation frequently driven by lncRNA tissue specificity. Notably, three modules associated with the extracellular matrix represented potential networks of lncRNAs regulating key events in tumour progression. These included a tumour-specific signature of 33 lncRNAs that may play a role in inducing epithelial-mesenchymal transition through modulation of TGF signalling, and two stromal-specific modules comprising 26 lncRNAs linked to a tumour suppressive microenvironment and 12 lncRNAs related to cancer-associated fibroblasts. One member of the 12-lncRNA signature was experimentally supported by siRNA knockdown, which resulted in attenuated differentiation of quiescent fibroblasts to a cancer-associated phenotype.ConclusionsOverall, the study provides a unique pan-cancer perspective on the lncRNA functional landscape, acting as a global source of novel hypotheses on lncRNA contribution to tumour progression.
引用
收藏
页数:15
相关论文
共 60 条
[1]   Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events [J].
Ashouri, Arghavan ;
Sayin, Volkan I. ;
Van den Eynden, Jimmy ;
Singh, Simranjit X. ;
Papagiannakopoulos, Thales ;
Larsson, Erik .
NATURE COMMUNICATIONS, 2016, 7 :13197
[2]   Secretome profiling of oral squamous cell carcinoma-associated fibroblasts reveals organization and disassembly of extracellular matrix and collagen metabolic process signatures [J].
Bagordakis, Elizabete ;
Sawazaki-Calone, Iris ;
Soares Macedo, Carolina Carneiro ;
Carnielli, Carolina M. ;
de Oliveira, Carine Ervolino ;
Rodrigues, Priscila Campioni ;
Rangel, Ana Lucia C. A. ;
dos Santos, Jean Nunes ;
Risteli, Juha ;
Graner, Edgard ;
Salo, Tuula ;
Paes Leme, Adriana Franco ;
Coletta, Ricardo D. .
TUMOR BIOLOGY, 2016, 37 (07) :9045-9057
[3]   Fra-1/AP-1 induces EMT in mammary epithelial cells by modulating Zeb1/2 and TGFβ expression [J].
Bakiri, L. ;
Macho-Maschler, S. ;
Custic, I. ;
Niemiec, J. ;
Guio-Carrion, A. ;
Hasenfuss, S. C. ;
Eger, A. ;
Mueller, M. ;
Beug, H. ;
Wagner, E. F. .
CELL DEATH AND DIFFERENTIATION, 2015, 22 (02) :336-350
[4]   The landscape of antisense gene expression in human cancers [J].
Balbin, O. Alejandro ;
Malik, Rohit ;
Dhanasekaran, Saravana M. ;
Prensner, John R. ;
Cao, Xuhong ;
Wu, Yi-Mi ;
Robinson, Dan ;
Wang, Rui ;
Chen, Guoan ;
Beer, David G. ;
Nesvizhskii, Alexey I. ;
Chinnaiyan, Arul M. .
GENOME RESEARCH, 2015, 25 (07) :1068-1079
[5]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[6]   Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers [J].
Bradford, James R. ;
Wappett, Mark ;
Beran, Garry ;
Logie, Armelle ;
Delpuech, Oona ;
Brown, Henry ;
Boros, Joanna ;
Camp, Nicola J. ;
McEwen, Robert ;
Mazzola, Anne Marie ;
D'Cruz, Celina ;
Barry, Simon T. .
ONCOTARGET, 2016, 7 (15) :20773-20787
[7]   RNA-Seq Differentiates Tumour and Host mRNA Expression Changes Induced by Treatment of Human Tumour Xenografts with the VEGFR Tyrosine Kinase Inhibitor Cediranib [J].
Bradford, James R. ;
Farren, Matthew ;
Powell, Steve J. ;
Runswick, Sarah ;
Weston, Susie L. ;
Brown, Helen ;
Delpuech, Oona ;
Wappett, Mark ;
Smith, Neil R. ;
Carr, T. Hedley ;
Dry, Jonathan R. ;
Gibson, Neil J. ;
Barry, Simon T. .
PLOS ONE, 2013, 8 (06)
[8]   Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers [J].
Brunner, Alayne L. ;
Beck, Andrew H. ;
Edris, Badreddin ;
Sweeney, Robert T. ;
Zhu, Shirley X. ;
Li, Rui ;
Montgomery, Kelli ;
Varma, Sushama ;
Gilks, Thea ;
Guo, Xiangqian ;
Foley, Joseph W. ;
Witten, Daniela M. ;
Giacomini, Craig P. ;
Flynn, Ryan A. ;
Pollack, Jonathan R. ;
Tibshirani, Robert ;
Chang, Howard Y. ;
van de Rijn, Matt ;
West, Robert B. .
GENOME BIOLOGY, 2012, 13 (08) :R75
[9]   Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function [J].
Cabanski, Christopher R. ;
White, Nicole M. ;
Dang, Ha X. ;
Silva-Fisher, Jessica M. ;
Rauck, Corinne E. ;
Cicka, Danielle ;
Maher, Christopher A. .
RNA BIOLOGY, 2015, 12 (06) :628-642
[10]   ToppGene Suite for gene list enrichment analysis and candidate gene prioritization [J].
Chen, Jing ;
Bardes, Eric E. ;
Aronow, Bruce J. ;
Jegga, Anil G. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W305-W311