Some constructions of projectively flat Finsler metrics

被引:29
作者
Mo Kwhuan [1 ]
Shen Zhongmin
Yang Chunhong
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[3] Inner Mongolia Univ, Dept Math, Hohhot 010021, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2006年 / 49卷 / 05期
基金
中国国家自然科学基金;
关键词
Randers metric; (alpha; beta)-metric; Finsler metric; projectively flat metric; S-curvature;
D O I
10.1007/s11425-006-0703-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we find some solutions to a system of partial differential equations that characterize the projectively flat Finsler metrics. Further, we discover that some of these metrics actually have the zero flag curvature.
引用
收藏
页码:703 / 714
页数:12
相关论文
共 8 条
[2]   On the flag curvature of Finsler metrics of scalar curvature [J].
Chen, XY ;
Mo, XH ;
Shen, ZM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :762-780
[3]   On the geometries, in which the tangents are tersests [J].
Hamel, G .
MATHEMATISCHE ANNALEN, 1903, 57 :231-264
[4]  
Kitayama M., 1995, J HOKKAIDO U ED A, V46, P1
[5]  
Matsumoto M., 1998, TENSOR, V60, P123
[6]  
SHEN Z, 2004, MSRI SERIES, V50
[7]   Projectively flat Randers metrics with constant flag curvature [J].
Shen, ZM .
MATHEMATISCHE ANNALEN, 2003, 325 (01) :19-30
[8]   Projectively flat Finsler metrics of constant flag curvature [J].
Shen, ZM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (04) :1713-1728