Gradient-Doped Colloidal Quantum Dot Solids Enable Thermophotovoltaic Harvesting of Waste Heat

被引:8
作者
Kiani, Amirreza [1 ]
Movahed, Hamidreza Fayaz [1 ]
Hoogland, Sjoerd [1 ]
Voznyy, Oleksandr [1 ]
Wolowiec, Remigiusz [1 ]
Levina, Larissa [1 ]
de Arquer, F. Pelar Garcia [1 ]
Pietsch, Patrick [1 ,2 ]
Wang, Xihua [1 ,3 ]
Maraghechi, Pouya [1 ]
Sargent, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
[2] Swiss Fed Inst Technol, Dept Informat Technol & Elect, ETZ H67,Gloriastr 35, CH-8092 Zurich, Switzerland
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2 V4, Canada
来源
ACS ENERGY LETTERS | 2016年 / 1卷 / 04期
关键词
SOLAR-CELLS; PHOTOVOLTAICS; PBS; ELECTRICITY; GENERATION; SUBSTRATE; TRANSPORT; DESIGN; FILMS;
D O I
10.1021/acsenergylett.6b00314
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electromagnetic radiation emitted from hot objects represents a sizable source of energy, one that in most applications is not harvested efficiently. Even for a blackbody at 800 degrees C, the radiation intensity peaks near 2.7 mu m wavelength, and this requires a semiconductor absorber having a band gap in the short-wavelength infrared and beyond to enable thermophotovoltaic (TPV) heat recovery. Here we report the first solution-processed TPV device to harvest efficiently 800 degrees C heat. The active layer consists of colloidal quantum dots (CQDs), infrared-absorbing nanoparticles synthesized using a scalable solution-based method, having 0.75 eV band gap. We construct rectifying junction devices based on controllably p- and n-doped CQD solids that benefit from a gradient in electron affinity that extends over the devices' thickness. The gradient doped architecture relies on engineered charge carrier drift and overcomes the existing limitations of small band gap CQD solids. The devices provide 2.7% efficiency in the conversion of optical power from above-band gap photons from a blackbody source at 800 +/- 20 degrees C into electrical power. The cells were thermally stable up to 140 degrees C, increasing the promise of CQD solids for TPV applications.
引用
收藏
页码:740 / 746
页数:7
相关论文
共 30 条
[11]   GaSb Thermophotovoltaic Cells Grown on GaAs Substrate Using the Interfacial Misfit Array Method [J].
DeMeo, Dante ;
Shemelya, Corey ;
Downs, Chandler ;
Licht, Abigail ;
Magden, Emir Salih ;
Rotter, Tom ;
Dhital, Chetan ;
Wilson, Stephen ;
Balakrishnan, Ganesh ;
Vandervelde, Thomas E. .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (04) :902-908
[12]   Theoretical limits of thermophotovoltaic solar energy conversion [J].
Harder, NP ;
Würfel, P .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (05) :S151-S157
[13]   Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution [J].
Hines, MA ;
Scholes, GD .
ADVANCED MATERIALS, 2003, 15 (21) :1844-1849
[14]   Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression [J].
Ip, Alexander H. ;
Kiani, Amirreza ;
Kramer, Iilan J. ;
Voznyy, Oleksandr ;
Movahed, Hamidreza F. ;
Levina, Larissa ;
Adachi, Michael M. ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
ACS NANO, 2015, 9 (09) :8833-8842
[15]   Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier [J].
Ip, Alexander H. ;
Labelle, Andre J. ;
Sargent, Edward H. .
APPLIED PHYSICS LETTERS, 2013, 103 (26)
[16]   Thiocyanate-Capped PbS Nanocubes: Ambipolar Transport Enables Quantum Dot Based Circuits on a Flexible Substrate [J].
Koh, Weon-kyu ;
Saudari, Sangameshwar R. ;
Fafarman, Aaron T. ;
Kagan, Cherie R. ;
Murray, Christopher B. .
NANO LETTERS, 2011, 11 (11) :4764-4767
[17]   Colloidal quantum dot solar cells on curved and flexible substrates [J].
Kramer, Illan J. ;
Moreno-Bautista, Gabriel ;
Minor, James C. ;
Kopilovic, Damir ;
Sargent, Edward H. .
APPLIED PHYSICS LETTERS, 2014, 105 (16)
[18]   The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices [J].
Kramer, Illan J. ;
Sargent, Edward H. .
CHEMICAL REVIEWS, 2014, 114 (01) :863-882
[19]   Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance [J].
Lan, Xinzheng ;
Voznyy, Oleksandr ;
Kiani, Amirreza ;
de Arquer, F. Pelayo Garcia ;
Abbas, Abdullah Saud ;
Kim, Gi-Hwan ;
Liu, Mengxia ;
Yang, Zhenyu ;
Walters, Grant ;
Xu, Jixian ;
Yuan, Mingjian ;
Ning, Zhijun ;
Fan, Fengjia ;
Kanjanaboos, Pongsakorn ;
Kramer, Illan ;
Zhitomirsky, David ;
Lee, Philip ;
Perelgut, Alexander ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2016, 28 (02) :299-304
[20]   Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J].
McDonald, SA ;
Konstantatos, G ;
Zhang, SG ;
Cyr, PW ;
Klem, EJD ;
Levina, L ;
Sargent, EH .
NATURE MATERIALS, 2005, 4 (02) :138-142