Robust synchronization of master-slave chaotic systems using approximate model: An experimental study

被引:18
作者
Ahmed, Hafiz [1 ]
Salgado, Ivan [2 ]
Rios, Hector [3 ]
机构
[1] Coventry Univ, Sch Mech Aerosp & Automot Engn, Coventry CV1 5FB, W Midlands, England
[2] Inst Politecn Nacl, Ctr Innovac & Desarrollo Tecnol Computo, Mexico City, DF, Mexico
[3] CONACYT, TECNM, Inst Tecnol La Laguna, Div Estudios Posgrad & Invest, Blvd Revoluc & Cuautemoc S-N, Torreon 27000, Coahuila, Mexico
关键词
Robust synchronization; Chaotic systems; Sliding-mode; Master-slave synchronization; Model-free control; NONLINEAR-SYSTEMS; NEURAL-NETWORKS; REDUCED-ORDER; FEEDBACK-CONTROL; OUTPUT-FEEDBACK; CONTROLLER; DESIGN; DIFFERENTIATION; ALGORITHMS; OBSERVER;
D O I
10.1016/j.isatra.2018.01.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust synchronization of master slave chaotic systems are considered in this work. First an approximate model of the error system is obtained using the ultra-local model concept. Then a Continuous Singular Terminal Sliding-Mode (CSTSM) Controller is designed for the purpose of synchronization. The proposed approach is output feedback-based and uses fixed-time higher order sliding-mode (HOSM) differentiator for state estimation. Numerical simulation and experimental results are given to show the effectiveness of the proposed technique. (C) 2018 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 35 条
[1]  
Ahmed Hafiz, 2015, IFAC - Papers Online, V48, P333, DOI 10.1016/j.ifacol.2015.09.207
[2]   Oscillatory Global Output Synchronization of Nonidentical Nonlinear Systems [J].
Ahmed, Hafiz ;
Ushirobira, Rosane ;
Efimov, Denis ;
Fridman, Leonid ;
Wang, Yongqiang .
IFAC PAPERSONLINE, 2017, 50 (01) :2708-2713
[3]   A Fault Detection Method for Automatic Detection of Spawning in Oysters [J].
Ahmed, Hafiz ;
Ushirobira, Rosane ;
Efimov, Denis ;
Tran, Damien ;
Sow, Mohamedou ;
Payton, Laura ;
Massabuau, Jean-Charles .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (03) :1140-1147
[4]   Firefly Algorithm Optimized Robust Protection Scheme for DC Microgrid [J].
Amamra, Sid-Ali ;
Ahmed, Hafiz ;
El-Sehiemy, Ragab A. .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2017, 45 (10) :1141-1151
[5]   Chaos control in the uncertain Duffing oscillator [J].
Bowong, S ;
Kakmeni, FMM ;
Dimi, JL .
JOURNAL OF SOUND AND VIBRATION, 2006, 292 (3-5) :869-880
[6]   Analysis and design of second-order sliding-mode algorithms for quadrotor roll and pitch estimation [J].
Chang, Jing ;
Cieslak, Jerome ;
Davila, Jorge ;
Zolghadri, Ali ;
Zhou, Jun .
ISA TRANSACTIONS, 2017, 71 :495-512
[7]   Synchronization of nonlinear fractional order systems by means of PIrα reduced order observer [J].
Cruz-Victoria, Juan C. ;
Martinez-Guerra, Rafael ;
Perez-Pinacho, Claudia A. ;
Carlo Gomez-Cortes, Gian .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 :224-231
[8]   Uniform Robust Exact Differentiator [J].
Cruz-Zavala, Emmanuel ;
Moreno, Jaime A. ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2727-2733
[9]   CHAOS SHIFT KEYING - MODULATION AND DEMODULATION OF A CHAOTIC CARRIER USING SELF-SYNCHRONIZING CHUA CIRCUITS [J].
DEDIEU, H ;
KENNEDY, MP ;
HASLER, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :634-642
[10]   Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors [J].
Elmetennani, Shahrazed ;
Laleg-Kirati, Taous Meriem .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (05) :1848-1855