This paper presents a new computer code developed to solve the 1D magnetotelluric (MT) inverse problem using a Bayesian trans-dimensional Markov chain Monte Carlo algorithm. MT data are sensitive to the depth-distribution of rock electric conductivity (or its reciprocal, resistivity). The solution provided is a probability distribution - the so-called posterior probability distribution (PPD) for the conductivity at depth, together with the PPD of the interface depths. The PPD is sampled via a reversible-jump Markov Chain Monte Carlo (rjMcMC) algorithm, using a modified Metropolis-Hastings (MH) rule to accept or discard candidate models along the chains. As the optimal parameterization for the inversion process is generally unknown a trans-dimensional approach is used to allow the dataset itself to indicate the most probable number of parameters needed to sample the PPD. The algorithm is tested against two simulated datasets and a set of MT data acquired in the Clare Basin (County Clare, Ireland). For the simulated datasets the correct number of conductive layers at depth and the associated electrical conductivity values is retrieved, together with reasonable estimates of the uncertainties on the investigated parameters. Results from the inversion of field measurements are compared with results obtained using a deterministic method and with well-log data from a nearby borehole. The PPD is in good agreement with the well-log data, showing as a main structure a high conductive layer associated with the Clare Shale formation. In this study, we demonstrate that our new code go beyond algorithms developend using a linear inversion scheme, as it can be used: (1) to by-pass the subjective choices in the 1D parameterizations, i.e. the number of horizontal layers in the 1D parameterization, and (2) to estimate realistic uncertainties on the retrieved parameters. The algorithm is implemented using a simple MPI approach, where independent chains run on isolated CPU, to take full advantage of parallel computer architectures. In case of a large number of data, a master/slave appoach can be used, where the master CPU samples the parameter space and the slave CPUs compute forward solutions.
机构:
Univ Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, FranceUniv Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, France
Rouchier, Simon
Busser, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, France
CEA LITEN, Dept Solar Technol, F-73375 Le Bourget Du Lac, FranceUniv Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, France
Busser, Thomas
Pailha, Mickael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, FranceUniv Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, France
Pailha, Mickael
Piot, Amandine
论文数: 0引用数: 0
h-index: 0
机构:
CEA LITEN, Dept Solar Technol, F-73375 Le Bourget Du Lac, FranceUniv Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, France
Piot, Amandine
Woloszyn, Monika
论文数: 0引用数: 0
h-index: 0
机构:
Univ Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, FranceUniv Savoie, LOCIE, CNRS UMR5271, Savoie Technolac, Campus Sci, F-73376 Le Bourget Du Lac, France
机构:
China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R ChinaChina Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
He, Yan-Xiao
He, Gang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R ChinaChina Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
He, Gang
Yuan, Sanyi
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R ChinaChina Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
Yuan, Sanyi
Zhao, Jianguo
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R ChinaChina Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
Zhao, Jianguo
Wang, Shangxu
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R ChinaChina Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
Liu, Zhengguang
Pan, Kejia
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
Pan, Kejia
Zhang, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
Zhang, Liang
Yao, Hongbo
论文数: 0引用数: 0
h-index: 0
机构:
Macau Univ Sci & Technol, Macau Inst Space Technol & Applicat, Macau, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
Yao, Hongbo
Fu, Kang
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
Fu, Kang
Tang, Rusang
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
Tang, Rusang
Lu, Guangyin
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R ChinaCent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
Lu, Guangyin
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,
2024,
62