Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation

被引:16
作者
Kuang, Nenghui [1 ,3 ]
Liu, Bingquan [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Weinan Normal Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimator; sub-fractional Brownian motion; Stein's method; Malliavin calculus; MALLIAVIN CALCULUS; TIME-SERIES;
D O I
10.1214/14-BJPS246
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the L-2-consistency and the strong consistency of the maximum likelihood estimators (MLE) of the mean and variance of the sub-fractional Brownian motion with drift at discrete observation. By combining the Stein's method with Malliavin calculus, we obtain the central limit theorem and the Berry-Esseen bounds for these estimators.
引用
收藏
页码:778 / 789
页数:12
相关论文
共 50 条
  • [41] STOCHASTIC INTEGRAL FOR NON-ADAPTED PROCESSES RELATED TO SUB-FRACTIONAL BROWNIAN MOTION WHEN H > 1/2
    Amel, Belhadj
    Abdeldjebbar, Kandouci
    Angelika, Bouchentouf Amina
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (02): : 165 - 176
  • [42] On the sub-mixed fractional Brownian motion
    El-Nouty Charles
    Zili Mounir
    Applied Mathematics-A Journal of Chinese Universities, 2015, 30 : 27 - 43
  • [43] On the parameter estimations for geometric mixed subfractional Brownian motion model
    Sun, Xiaoxia
    Wang, Bing
    Zheng, Shiyi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [44] On the sub-mixed fractional Brownian motion
    El-Nouty Charles
    Zili Mounir
    Applied Mathematics:A Journal of Chinese Universities, 2015, (01) : 27 - 43
  • [45] On the sub-mixed fractional Brownian motion
    Charles, El-Nouty
    Mounir, Zili
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2015, 30 (01) : 27 - 43
  • [46] Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion
    Kim, Yoon Tae
    Park, Hyun Suk
    STATISTICS & PROBABILITY LETTERS, 2015, 105 : 181 - 188
  • [47] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766
  • [49] The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6
    Nourdin, Ivan
    Reveillac, Anthony
    Swanson, Jason
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 2117 - 2162
  • [50] Numerical approach to the drift parameter estimation in the model with two fractional Brownian motions
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Zhelezniak, Hanna
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3206 - 3220