Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation

被引:16
作者
Kuang, Nenghui [1 ,3 ]
Liu, Bingquan [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
[2] Weinan Normal Univ, Sch Math & Informat Sci, Weinan 714000, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimator; sub-fractional Brownian motion; Stein's method; Malliavin calculus; MALLIAVIN CALCULUS; TIME-SERIES;
D O I
10.1214/14-BJPS246
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the L-2-consistency and the strong consistency of the maximum likelihood estimators (MLE) of the mean and variance of the sub-fractional Brownian motion with drift at discrete observation. By combining the Stein's method with Malliavin calculus, we obtain the central limit theorem and the Berry-Esseen bounds for these estimators.
引用
收藏
页码:778 / 789
页数:12
相关论文
共 18 条
[1]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[2]  
Beran J., 1994, STAT LONG MEMORY PRO
[3]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[4]   LARGE-SAMPLE PROPERTIES OF PARAMETER ESTIMATES FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN TIME-SERIES [J].
FOX, R ;
TAQQU, MS .
ANNALS OF STATISTICS, 1986, 14 (02) :517-532
[5]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[6]   ASYMPTOTIC THEORY OF LINEAR TIME-SERIES MODELS [J].
HANNAN, EJ .
JOURNAL OF APPLIED PROBABILITY, 1973, 10 (01) :130-145
[7]  
Hu YZ, 2011, ACTA MATH SCI, V31, P1851
[8]   Parameter estimation for fractional Ornstein-Uhlenbeck processes [J].
Hu, Yaozhong ;
Nualart, David .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) :1030-1038
[9]  
Hu YZ, 2000, LECT NOTES MATH, V1729, P329
[10]   Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk [J].
Kuang, Nenghui ;
Xie, Huantian .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) :75-91