Positive solution to a class of relativistic nonlinear Schrodinger equation

被引:28
作者
Cheng, Yongkuan [1 ]
Yang, Jun [1 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
关键词
Schrodinger equations; Mountain pass theorem; Positive solutions; SOLITON-SOLUTIONS; EXISTENCE; WAVES;
D O I
10.1016/j.jmaa.2013.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a change of variables, we convert a quasilinear elliptic equation into a semilinear one. Then by Jeanjean's result [6], we get a bounded (PS) sequence for the corresponding functional and show the existence of positive nontrivial solution. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:665 / 674
页数:10
相关论文
共 15 条
[1]   Static solutions of a D-dimensional modified nonlinear Schrodinger equation [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, WJ .
NONLINEARITY, 2003, 16 (04) :1481-1497
[2]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[3]   Global existence of small solutions to a relativistic nonlinear Schrodinger equation [J].
deBouard, A ;
Hayashi, N ;
Saut, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (01) :73-105
[4]   Electrons on hexagonal lattices and applications to nanotubes [J].
Hartmann, B ;
Zakrzewski, WJ .
PHYSICAL REVIEW B, 2003, 68 (18)
[5]   GENERAL-METHOD FOR THE SOLUTION OF NON-LINEAR SOLITON AND KINK SCHRODINGER-EQUATIONS [J].
HASSE, RW .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 37 (01) :83-87
[6]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[7]   MAGNETIC SOLITONS [J].
KOSEVICH, AM ;
IVANOV, BA ;
KOVALEV, AS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 194 (3-4) :117-238
[8]  
Kurhura S., 1981, J PHYS SOC JPN, V50, P3262
[9]   EVOLUTION THEOREM FOR A CLASS OF PERTURBED ENVELOPE SOLITON-SOLUTIONS [J].
LAEDKE, EW ;
SPATSCHEK, KH ;
STENFLO, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2764-2769
[10]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223