The Classification of Torsion-free TI-Groups

被引:1
作者
Andruszkiewicz, Ryszard R. R. [1 ]
Woronowicz, Mateusz [1 ]
机构
[1] Univ Bialystok, Fac Math, 1M Ciolkowskiego St, PL-15245 Bialystok, Poland
关键词
torsion-free abelian group; filial ring; associative ring; commutative ring; additive groups of rings; ADDITIVE GROUPS; RINGS;
D O I
10.1142/S1005386722000414
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An abelian group A is called a TI-group if every associative ring with the additive group A is filial. The filiality of a ring R means that the ring R is associative and all ideals of any ideal of R are ideals in R. In this paper, torsion-free TI-groups are described up to the structure of associative nil groups. It is also proved that, for torsion-free abelian groups that are not associative nil, the condition TI implies the indecomposability and homogeneity. The paper contains constructions of 2(N0) such groups of any rank from 2 to 2(N0) which are pairwise non-isomorphic.
引用
收藏
页码:595 / 606
页数:12
相关论文
共 33 条
[1]   ON THE INDECOMPOSABLE TORSION-FREE ABELIAN GROUPS OF RANK TWO [J].
Aghdam, A. M. ;
Najafizadeh, A. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (02) :425-438
[2]  
Andrijanov V.I., 1967, MAT SB, V74, P225
[3]  
Andruszkiewicz R., 1988, Portugaliae Mathematica, V45, P139
[4]   A torsion-free abelian group of finite rank exists whose quotient group modulo the square subgroup is not a nil-group [J].
Andruszkiewicz, R. R. ;
Woronowicz, M. .
QUAESTIONES MATHEMATICAE, 2018, 41 (04) :483-491
[5]   ON THE SQUARE SUBGROUP OF A MIXED SI-GROUP [J].
Andruszkiewicz, R. R. ;
Woronowicz, M. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (01) :295-304
[6]   On additive groups of associative and commutative rings [J].
Andruszkiewicz, R. R. ;
Woronowicz, M. .
QUAESTIONES MATHEMATICAE, 2017, 40 (04) :527-537
[7]   IMBEDDING A FILIAL RING WITH IDENTITY [J].
Andruszkiewicz, R. R. ;
Pryszczepko, K. ;
Maczynski, M. .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (05) :2067-2074
[8]   ON SI-GROUPS [J].
Andruszkiewicz, R. R. ;
Woronowicz, M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 91 (01) :92-103
[10]  
Andruszkiewicz RR, 2007, ALGEBRA DISCRET MATH, P18