Mixed virtual element methods for elastodynamics with weak symmetry

被引:18
作者
Zhang, Baiju [1 ]
Yang, Yan [2 ]
Feng, Minfu [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610065, Sichuan, Peoples R China
[2] Southwest Petr Univ, Sch Sci, Chengdu 610500, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Virtual elements; Elastodynamics; Weak symmetry; 2ND-ORDER ELLIPTIC PROBLEMS; PRIORI ERROR ESTIMATION; FINITE-ELEMENT; POLYGONAL DOMAIN; ELASTICITY; SUPERCONVERGENCE; FORMULATION; TETRAHEDRA; TRIANGLES; STABILITY;
D O I
10.1016/j.cam.2018.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze a mixed virtual element method for linear elastodynamics in velocity-stress formulation with weak symmetry. In this formulation, the symmetry of the stress is relaxed by the rotation of the displacement, and the system of second order differential equation in time is reduced to first order differential equations in time by introducing velocity. The proposed method uses H(div)-conforming virtual element space of order k (k >= 1) for the stress and discontinuous piecewise-polynomial spaces of degree k for the velocity and rotation. For time discretization, we use the Crank-Nicolson scheme. Both semidiscrete and fully discrete error estimates are robust for nearly incompressible materials. Numerical experiments confirm our theoretical predictions. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 71
页数:23
相关论文
共 56 条
[1]  
[Anonymous], 2012, THESIS U GEORGIA ATH
[2]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[3]  
Antonietti P. F., 2017, SPECTRAL HIGH ORDER, V119, P3
[4]   Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem [J].
Antonietti, Paola F. ;
de Dios, Blanca Ayuso ;
Mazzieri, Ilario ;
Quarteroni, Alfio .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) :143-170
[5]   High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation [J].
Antonietti, Paola F. ;
Marcati, Carlo ;
Mazzieri, Ilario ;
Quarteroni, Alfio .
NUMERICAL ALGORITHMS, 2016, 71 (01) :181-206
[6]  
Arnold D.N., 1984, JAPAN J APPL MATH, V1, P347
[7]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[8]   MIXED METHODS FOR ELASTODYNAMICS WITH WEAK SYMMETRY [J].
Arnold, Douglas N. ;
Lee, Jeonghun J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) :2743-2769
[9]   A stress/displacement Virtual Element method for plane elasticity problems [J].
Artioli, E. ;
de Miranda, S. ;
Lovadina, C. ;
Patruno, L. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 :155-174
[10]   A new family of mixed finite elements for the linear elastodynamic problem [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2109-2132