Design of very thin wide band absorbers using modified local best particle swarm optimization

被引:20
作者
Chamaani, Somayyeh [1 ]
Mirtaheri, Seyed Abdullah [1 ]
Shooredeli, Mahdi Aliyari [1 ]
机构
[1] KN Toosi Univ Technol, Fac Elect Engn, Tehran, Iran
关键词
bandwidth; electromagnetic absorber; genetic algorithm; local optimum; particle swarm optimization;
D O I
10.1016/j.aeue.2007.06.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A method of using particle swarm optimization (PSO) algorithm to design electromagnetic absorber is presented. To demonstrate effectiveness of the PSO algorithm three different design cases are optimized. To reduce the local minimum traps, a modified local search strategy is employed. Each design problem is optimized using genetic algorithm (GA) and four variants of PSO algorithms, namely global PSO (gbest), local PSO (lbest), comprehensive learning PSO (CLPSO), and modified local PSO (MLPSO). The results clearly show that the MLPSO is a robust, fast, and useful optimization tool for designing absorbers. A seven-layer absorber achieved by this method has reflection coefficient below 18.7 dB from VHF to 20 GHz. (c) 2007 Elsevier GmbH. All rights reserved.
引用
收藏
页码:549 / 556
页数:8
相关论文
共 18 条
[1]  
ANDRIES EP, 2002, COMPUTATIONAL INTELL, pCH16
[2]   Design of Yagi-Uda antennas using comprehensive learning particle swarm optimisation [J].
Baskar, S ;
Alphones, A ;
Suganthan, PN ;
Liang, JJ .
IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2005, 152 (05) :340-346
[3]  
Boeringer D., 2005, IEEE T ANTENNAS PROP, V53
[4]   Particle swarm optimization versus genetic algorithms for phased array synthesis [J].
Boeringer, DW ;
Werner, DH .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (03) :771-779
[5]  
CHAMBERS B, 1996, IEEE P RADAR SONAR N, V143
[6]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[7]  
CUI S, 2005, IEEE T ANTENNAS PROP, V53
[8]  
EBERHART R, 6 INT S MACH LEARN H, P39
[9]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[10]  
KNOTT EF, 1993, RADAR CROSS SECTION, pCH8