A programming interface to the Riemannian manifold in a finite element environment

被引:12
作者
Pellikka, M. [1 ]
Tarhasaari, T. [1 ]
Suuriniemi, S. [1 ]
Kettunen, L. [1 ]
机构
[1] Tampere Univ Technol, FIN-33101 Tampere, Finland
关键词
Differential geometry; Electromagnetics; Finite element method; Boundary value problems;
D O I
10.1016/j.cam.2012.10.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a user-programmable interface to the Riemannian manifold. At the interface, starting from the preprocessor coordinate system (chart), one can define other charts for the manifold and determine the manifold metric properties independently of the preprocessor coordinate chart representation of the manifold. Further, the interface allows one to manipulate vector fields and differential forms as abstract mathematical entities, rather than as their coefficient representations. In contrast to interfaces that use classical vector analysis, the metric is fully isolated at the interface. As an example of finite element modeling, the interface is applied to set up a boundary value problem on a Riemannian manifold. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 15 条
[1]  
Bell N., 2013, ACM T MATH IN PRESS, V39
[2]  
Bossavit A., 1992, International Journal of Applied Electromagnetics in Materials, V2, P333
[3]  
Bossavit A., 1998, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements
[4]   Size Is in the Eye of the Beholder: Technique for Nondestructive Detection of Parameterized Defects [J].
Calvano, Flavio ;
Raumonen, Pasi ;
Suuriniemi, Saku ;
Kettunen, Lauri ;
Rubinacci, Guglielmo .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) :3006-3009
[5]  
Frankel T., 1997, GEOMETRY PHYS
[6]   Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities [J].
Geuzaine, Christophe ;
Remacle, Jean-Francois .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (11) :1309-1331
[7]   Finite element modelling with transformation techniques [J].
Henrotte, F ;
Meys, B ;
Hedia, H ;
Dular, P ;
Legros, W .
IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) :1434-1437
[8]   Adaptive numerical treatment of elliptic systems on manifolds [J].
Holst, M .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) :139-191
[9]  
Munkres J., 1984, Elements of algebraic topology, V1
[10]   Controlling electromagnetic fields [J].
Pendry, J. B. ;
Schurig, D. ;
Smith, D. R. .
SCIENCE, 2006, 312 (5781) :1780-1782