FINE ASYMPTOTICS OF PROFILES AND RELAXATION TO EQUILIBRIUM FOR GROWTH-FRAGMENTATION EQUATIONS WITH VARIABLE DRIFT RATES

被引:26
作者
Balague, Daniel [1 ]
Canizo, Jose A. [2 ]
Gabriel, Pierre [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[3] Univ Versailles St Quentin En Yvelines, Lab Math Versailles, CNRS UMR 8100, F-78035 Versailles, France
关键词
Fragmentation; growth; eigenvalue problem; entropy; exponential convergence; long-time behavior; EXPONENTIAL DECAY;
D O I
10.3934/krm.2013.6.219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the long-time behavior of the growth-fragmentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to 0 and +infinity. Using these estimates we prove a spectral gap result by following the technique in [1], which implies that solutions decay to the equilibrium exponentially fast. The growth and fragmentation coefficients we consider are quite general, essentially only assumed to behave asymptotically like power laws.
引用
收藏
页码:219 / 243
页数:25
相关论文
共 13 条
[1]   Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations [J].
Caceres, Maria J. ;
Canizo, Jose A. ;
Mischler, Stephane .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (04) :334-362
[2]   On self-similarity and stationary problem for fragmentation and coagulation models [J].
Escobedo, M ;
Mischler, S ;
Ricard, MR .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :99-125
[3]  
Gabriel P., 2011, THESIS PARIS
[4]   EIGENELEMENTS OF A GENERAL AGGREGATION-FRAGMENTATION MODEL [J].
Jauffret, Marie Doumic ;
Gabriel, Pierre .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (05) :757-783
[5]  
Laurençot P, 2009, COMMUN MATH SCI, V7, P503
[6]  
Metz J.A.J., 1986, LECT NOTES BIOMATH, V68, P6
[7]   General relative entropy inequality: An illustration on growth models [J].
Michel, P ;
Mischler, S ;
Perthame, B .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (09) :1235-1260
[8]   General entropy equations for structured population models and scattering [J].
Michel, P ;
Mischler, S ;
Perthame, B .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) :697-702
[9]   Existence of a solution to the cell division eigenproblem [J].
Michel, Philippe .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1125-1153
[10]   Exponential decay for the fragmentation or cell-division equation [J].
Perthame, B ;
Ryzhik, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 210 (01) :155-177