Nonlinear scattering of a Bose-Einstein condensate on a rectangular barrier

被引:10
作者
Carr, Lincoln D. [1 ,2 ]
Miller, Rachel R. [1 ,3 ]
Bolton, Daniel R. [1 ,4 ]
Strong, Scott A. [1 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[2] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
[3] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[4] Baylor Univ, Dept Phys, Waco, TX 76798 USA
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 02期
基金
美国国家科学基金会;
关键词
DARK SOLITONS; DYNAMICS; STATES;
D O I
10.1103/PhysRevA.86.023621
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the nonlinear scattering and transmission of an atom laser or Bose-Einstein condensate (BEC) on a finite rectangular potential barrier. The nonlinearity inherent in this problem leads to several physical features beyond the well-known picture from single-particle quantum mechanics. We find numerical evidence for a denumerably infinite string of bifurcations in the transmission resonances as a function of nonlinearity and chemical potential, when the potential barrier is wide compared to the wavelength of oscillations in the condensate. Near the bifurcations, we observe extended regions of near-perfect resonance, in which the barrier is effectively invisible to the BEC. Unlike in the linear case, it is mainly the barrier width, not the height, that controls the transmission behavior. We show that the potential barrier can be used to create and localize a dark soliton or dark-soliton train from a phononlike standing wave.
引用
收藏
页数:13
相关论文
共 55 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
[2]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[3]  
[Anonymous], 1992, NUMERICAL RECIPES C
[4]   Atom laser with a cw output coupler [J].
Bloch, I ;
Hänsch, TW ;
Esslinger, T .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3008-3011
[5]  
Bowman Frank., 1961, INTRO ELLIPTIC FUNCT
[6]   Dark solitons in Bose-Einstein condensates [J].
Burger, S ;
Bongs, K ;
Dettmer, S ;
Ertmer, W ;
Sengstock, K ;
Sanpera, A ;
Shlyapnikov, GV ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (25) :5198-5201
[7]   Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond [J].
Carr, LD ;
Leung, MA ;
Reinhardt, WP .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) :3983-4001
[8]   Macroscopic quantum tunnelling of Bose-Einstein condensates in a finite potential well [J].
Carr, LD ;
Holland, MJ ;
Malomed, BA .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (17) :3217-3231
[9]   Tunable tunneling: An application of stationary states of Bose-Einstein condensates in traps of finite depth [J].
Carr, LD ;
Mahmud, KW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2001, 64 (03) :9
[10]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063610-063611