Classification of Hyperspectral Data Over Urban Areas Using Directional Morphological Profiles and Semi-Supervised Feature Extraction

被引:94
作者
Liao, Wenzhi [1 ,2 ]
Bellens, Rik [1 ]
Pizurica, Aleksandra [1 ]
Philips, Wilfried [1 ]
Pi, Youguo [2 ]
机构
[1] Univ Ghent, Dept Telecommun & Informat Proc, B-9000 Ghent, Belgium
[2] S China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
关键词
Classification; high spatial resolution; hyperspectral data; morphological profiles; semi-supervised feature extraction; WEIGHTED FEATURE-EXTRACTION; DIMENSIONALITY REDUCTION; IMAGES; FILTERS;
D O I
10.1109/JSTARS.2012.2190045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When using morphological features for the classification of high resolution hyperspectral images from urban areas, one should consider two important issues. The first one is that classical morphological openings and closings degrade the object boundaries and deform the object shapes. Morphological openings and closings by reconstruction can avoid this problem, but this process leads to some undesirable effects. Objects expected to disappear at a certain scale remain present when using morphological openings and closings by reconstruction. The second one is that the morphological profiles (MPs) with different structuring elements and a range of increasing sizes of morphological operators produce high-dimensional data. These high-dimensional data may contain redundant information and create a new challenge for conventional classification methods, especially for the classifiers which are not robust to the Hughes phenomenon. In this paper, we first investigate morphological profiles with partial reconstruction and directional MPs for the classification of high resolution hyperspectral images from urban areas. Secondly, we develop a semi-supervised feature extraction to reduce the dimensionality of the generated morphological profiles for the classification. Experimental results on real urban hyperspectral images demonstrate the efficiency of the considered techniques.
引用
收藏
页码:1177 / 1190
页数:14
相关论文
共 40 条
[1]  
[Anonymous], 2008, 1530 TR U WISC MAD D
[2]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[3]   Improved Classification of VHR Images of Urban Areas Using Directional Morphological Profiles [J].
Bellens, Rik ;
Gautama, Sidharta ;
Martinez-Fonte, Leyden ;
Philips, Wilfried ;
Chan, Jonathan Cheung-Wai ;
Canters, Frank .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10) :2803-2813
[4]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[5]   Classification and feature extraction for remote sensing images from urban areas based on morphological transformations [J].
Benediktsson, JA ;
Pesaresi, M ;
Arnason, K .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :1940-1949
[6]  
Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962
[7]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373
[8]   A Novel Approach to the Selection of Spatially Invariant Features for the Classification of Hyperspectral Images With Improved Generalization Capability [J].
Bruzzone, Lorenzo ;
Persello, Claudio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (09) :3180-3191
[9]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[10]   Semi-supervised graph-based hyperspectral image classification [J].
Camps-Valls, Gustavo ;
Bandos, Tatyana V. ;
Zhou, Dengyong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3044-3054