Major histocompatibility complex class II peptides;
Continuous kernel discrimination;
Feature selection;
Metropolis Monte Carlo simulated annealing;
AMINO-ACID-COMPOSITION;
MODIFIED MAHALANOBIS DISCRIMINANT;
T-CELL-EPITOPES;
MHC CLASS-I;
SUBCELLULAR-LOCALIZATION;
PROTEINS;
MACHINE;
ALGORITHM;
DESCRIPTORS;
RECOGNITION;
D O I:
10.1016/j.artmed.2011.10.005
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Objective: Accurate prediction of major histocompatibility complex (MHC) class II binding peptides helps reducing the experimental cost for identifying helper T cell epitopes, which has been a challenging problem partly because of the variable length of the binding peptides. This work is to develop an accurate model for predicting MHC-binding peptides using machine learning methods. Methods: In this work, a machine learning method, continuous kernel discrimination (CKD), was used for predicting MHC class II binders of variable lengths. The composition transition and distribution features were used for encoding peptide sequence and the Metropolis Monte Carlo simulated annealing approach was used for feature selection. Results: Feature selection was found to significantly improve the performance of the model. For benchmark dataset Dataset-1, the number of features is reduced from 147 to 24 and the area under the receiver operating characteristic curve (AUC) is improved from 0.8088 to 0.9034, while for benchmark dataset Dataset-2, the number of features is reduced from 147 to 44 and the AUC is improved from 0.7349 to 0.8499. An optimal CKD model was derived from the feature selection and bandwidth optimization using 10-fold cross-validation. Its AUC values are between 0.831 and 0.980 evaluated on benchmark datasets BM-Set1 and are between 0.806 and 0.949 on benchmark datasets BM-Set2 for MHC class II alleles. These results indicate a significantly better performance for our CKD model over other earlier models based on the training and testing of the same datasets. Conclusions: Our study suggested that the CKD method outperforms other machine learning methods proposed earlier in the prediction of MHC class II biding peptides. Moreover, the choice of the cut-off for CKD classifier is crucial for its performance. (C) 2011 Elsevier B.V. All rights reserved.
机构:
PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, AustraliaPO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
Brusic, V
;
Rudy, G
论文数: 0引用数: 0
h-index: 0
机构:PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
Rudy, G
;
Honeyman, M
论文数: 0引用数: 0
h-index: 0
机构:PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
Honeyman, M
;
Hammer, J
论文数: 0引用数: 0
h-index: 0
机构:PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
Hammer, J
;
Harrison, L
论文数: 0引用数: 0
h-index: 0
机构:PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
机构:
Guangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Chen, Chao
;
Chen, Lixuan
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Inst Standardizat, Guangzhou 510170, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Chen, Lixuan
;
Zou, Xiaoyong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Zou, Xiaoyong
;
Cai, Peixiang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
机构:
PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, AustraliaPO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
Brusic, V
;
Rudy, G
论文数: 0引用数: 0
h-index: 0
机构:PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
Rudy, G
;
Honeyman, M
论文数: 0引用数: 0
h-index: 0
机构:PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
Honeyman, M
;
Hammer, J
论文数: 0引用数: 0
h-index: 0
机构:PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
Hammer, J
;
Harrison, L
论文数: 0引用数: 0
h-index: 0
机构:PO Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
机构:
Guangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Chen, Chao
;
Chen, Lixuan
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Inst Standardizat, Guangzhou 510170, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Chen, Lixuan
;
Zou, Xiaoyong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China
Zou, Xiaoyong
;
Cai, Peixiang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R ChinaGuangdong Pharmaceut Univ, Sch Tradit Chinese Med, Guangzhou 510006, Guangdong, Peoples R China