Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging

被引:14
作者
Bilgic, Berkin [1 ]
Chatnuntawech, Itthi [1 ,2 ,3 ]
Setsompop, Kawin [1 ,2 ,3 ]
Cauley, Stephen F. [1 ,2 ,3 ]
Yendiki, Anastasia [1 ,2 ,3 ]
Wald, Lawrence L. [1 ,2 ,3 ]
Adalsteinsson, Elfar [1 ,2 ,3 ]
机构
[1] AA Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Harvard MIT Hlth Sci & Technol, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
Compressed sensing (CS); diffusion spectrum imaging (DSI); principal component analysis (PCA); regularization; undersampling; ALGORITHM; SIGNAL; MRI; SVD;
D O I
10.1109/TMI.2013.2271707
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.
引用
收藏
页码:2022 / 2033
页数:12
相关论文
共 37 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[3]   Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries [J].
Bilgic, Berkin ;
Setsompop, Kawin ;
Cohen-Adad, Julien ;
Yendiki, Anastasia ;
Wald, Lawrence L. ;
Adalsteinsson, Elfar .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (06) :1747-1754
[4]   Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity [J].
Bodammer, N ;
Kaufmann, J ;
Kanowski, M ;
Tempelmann, C .
MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (01) :188-193
[5]   NMR MICROSCOPY OF DYNAMIC DISPLACEMENTS - K-SPACE AND Q-SPACE IMAGING [J].
CALLAGHAN, PT ;
ECCLES, CD ;
XIA, Y .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1988, 21 (08) :820-822
[6]   Sparse solutions to linear inverse problems with multiple measurement vectors [J].
Cotter, SF ;
Rao, BD ;
Engan, K ;
Kreutz-Delgado, K .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) :2477-2488
[7]   Simultaneous echo refocusing in EPI [J].
Feinberg, DA ;
Reese, TG ;
Wedeen, VJ .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) :1-5
[8]   Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging [J].
Feinberg, David A. ;
Moeller, Steen ;
Smith, Stephen M. ;
Auerbach, Edward ;
Ramanna, Sudhir ;
Glasser, Matt F. ;
Miller, Karla L. ;
Ugurbil, Kamil ;
Yacoub, Essa .
PLOS ONE, 2010, 5 (12)
[9]   Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm [J].
Gorodnitsky, IF ;
Rao, BD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (03) :600-616
[10]  
Gramfort A, 2012, LECT NOTES COMPUT SC, V7511, P288, DOI 10.1007/978-3-642-33418-4_36