A FRACTAL QUANTUM MECHANICAL MODEL WITH COULOMB POTENTIAL

被引:13
作者
Strichartz, Robert S. [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Analysis on fractals; Sierpinski gasket; Schrodinger operator with Coulomb potential; nonrelativistic Hydrogen atom model; METRIC MEASURE-SPACES; BROWNIAN-MOTION; SIERPINSKI CARPETS; HARNACK INEQUALITIES; GASKET;
D O I
10.3934/cpaa.2009.8.743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Schrodinger operator H = -Delta + V on the product of two copies of an infinite blowup of the Sierpinski gasket, where V is the analog of a Coulomb potential (Delta V is a multiple of a delta function). So H is the analog of the standard Hydrogen atom model in nonrelativistic quantum mechanics. Like the classical model, we show that the essential spectrum of H is the same as for -Delta, and there is a countable discrete spectrum of negative eigenvalues.
引用
收藏
页码:743 / 755
页数:13
相关论文
共 27 条
[1]  
[Anonymous], 1978, METHODS MODERN MATH
[2]  
[Anonymous], P R SOC LOND A
[3]  
[Anonymous], 2001, ANAL FRACTALS
[4]   Stability of parabolic Harnack inequalities on metric measure spaces [J].
Barlow, Martin T. ;
Bass, Richard F. ;
Kumagai, Takashi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (02) :485-519
[5]   LOCAL-TIMES FOR BROWNIAN-MOTION ON THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 85 (01) :91-104
[6]  
Barlow MT, 2004, REV MAT IBEROAM, V20, P1
[7]  
BARLOW MT, 1989, ANN I H POINCARE-PR, V25, P225
[8]   TRANSITION DENSITIES FOR BROWNIAN-MOTION ON THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (3-4) :307-330
[9]   Brownian motion and harmonic analysis on Sierpinski carpets [J].
Barlow, MT ;
Bass, RF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :673-744
[10]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623