Effect of fuzzy partitioning in Crohn's disease classification: a neuro-fuzzy-based approach

被引:45
|
作者
Ahmed, Sk. Saddam [1 ]
Dey, Nilanjan [2 ]
Ashour, Amira S. [3 ,4 ]
Sifaki-Pistolla, Dimitra [5 ]
Balas-Timar, Dana [6 ]
Balas, Valentina E. [7 ]
Tavares, Joao Manuel R. S. [8 ]
机构
[1] JIS Coll Engn, Dept CSE, Kalyani, W Bengal, India
[2] Techno India Coll Technol, Dept Informat Technol, Kolkata, India
[3] Tanta Univ, Fac Engn, Dept Elect & Elect Commun Engn, Tanta, Egypt
[4] Taif Univ, Coll Comp & IT, At Taif, Saudi Arabia
[5] Univ Crete, Fac Med, Clin Social & Family Med, Iraklion, NE, Greece
[6] Aurel Vlaicu Univ Arad, Fac Educ Sci Psychol & Social Sci, Arad, Romania
[7] Aurel Vlaicu Univ Arad, Fac Engn, Arad, Romania
[8] Univ Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia Inovacao Engn Mecan & Engn Ind, Rua Dr Roberto Frias S-N, P-4200465 Oporto, Portugal
关键词
Genome sequencing; Factor analysis; Backpropagation neural network; Neuro-fuzzy; Classification; REGIONAL ENTERITIS; IMMUNE-DEFICIENCY; DIAGNOSIS; NETWORKS; IMMUNODEFICIENCY; RULES; AREA;
D O I
10.1007/s11517-016-1508-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Crohn's disease (CD) diagnosis is a tremendously serious health problem due to its ultimately effect on the gastrointestinal tract that leads to the need of complex medical assistance. In this study, the backpropagation neural network fuzzy classifier and a neuro-fuzzy model are combined for diagnosing the CD. Factor analysis is used for data dimension reduction. The effect on the system performance has been investigated when using fuzzy partitioning and dimension reduction. Additionally, further comparison is done between the different levels of the fuzzy partition to reach the optimal performance accuracy level. The performance evaluation of the proposed system is estimated using the classification accuracy and other metrics. The experimental results revealed that the classification with level-8 partitioning provides a classification accuracy of 97.67 %, with a sensitivity and specificity of 96.07 and 100 %, respectively.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [1] Effect of fuzzy partitioning in Crohn’s disease classification: a neuro-fuzzy-based approach
    Sk. Saddam Ahmed
    Nilanjan Dey
    Amira S. Ashour
    Dimitra Sifaki-Pistolla
    Dana Bălas-Timar
    Valentina E. Balas
    João Manuel R. S. Tavares
    Medical & Biological Engineering & Computing, 2017, 55 : 101 - 115
  • [2] A Neuro-Fuzzy-Based Sensing Approach for the Classification of Emulated Postural Instability
    Ando, B.
    Baglio, S.
    Marletta, V.
    Marrella, M.
    Rajan, S.
    Dibilio, V.
    Mostile, G.
    Zappia, M.
    IEEE SENSORS JOURNAL, 2023, 23 (19) : 23866 - 23874
  • [3] An infrared and Neuro-Fuzzy-based approach for identification and classification of road markings
    Marichal, G. N.
    Gonzalez, E. J.
    Acosta, L.
    Toledo, J.
    Sigut, M.
    Felipe, J.
    ADVANCES IN NATURAL COMPUTATION, PT 2, 2006, 4222 : 918 - 927
  • [4] A new neuro-fuzzy-based classification approach for hyperspectral remote sensing images
    Nafiseh Kakhani
    Mehdi Mokhtarzade
    Journal of Earth System Science, 2019, 128
  • [5] A neuro-fuzzy-based Preisach approach on hysteresis modeling
    Dlala, E
    Arkkio, A
    PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) : 49 - 52
  • [6] A new neuro-fuzzy-based classification approach for hyperspectral remote sensing images
    Kakhani, Nafiseh
    Mokhtarzade, Mehdi
    JOURNAL OF EARTH SYSTEM SCIENCE, 2019, 128 (02)
  • [7] A neuro-fuzzy-based modelling approach for sediment transport computation
    Wieprecht, Silke
    Tolossa, Habtamu G.
    Yang, Chih Ted
    HYDROLOGICAL SCIENCES JOURNAL, 2013, 58 (03) : 587 - 599
  • [8] Neuro-fuzzy-based solar cell model
    AbdulHadi, M
    Al-Ibrahim, AA
    Virk, GS
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, 19 (03) : 619 - 624
  • [9] Neuro-fuzzy-based skill learning for robots
    Lin, Hsien-I.
    Lee, C. S. George
    ROBOTICA, 2012, 30 : 1013 - 1027
  • [10] Adaptive Neuro-Fuzzy-based Vibration Approach for Structural Fault Diagnosis
    Hakim, S. J. S.
    Kamarudin, A. F.
    Mokhatar, S. N.
    Jaini, Z. M.
    Umar, S.
    Mohamad, N.
    Jamaluddin, N.
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2022, 14 (06): : 378 - 388