Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase

被引:164
作者
Jian, Jing-Xin [1 ,2 ]
Liu, Qiang [1 ,2 ,3 ]
Li, Zhi-Jun [1 ,2 ]
Wang, Feng [1 ,2 ]
Li, Xu-Bing [1 ,2 ]
Li, Cheng-Bo [1 ,2 ]
Liu, Bin [1 ,2 ]
Meng, Qing-Yuan [1 ,2 ]
Chen, Bin [1 ,2 ]
Feng, Ke [1 ,2 ]
Tung, Chen-Ho [1 ,2 ]
Wu, Li-Zhu [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Lanzhou Univ, State Key Lab Appl Organ Chem, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
IRON CARBONYL THIOLATE; CDTE QUANTUM DOTS; ACTIVE-SITE; ELECTRON-TRANSFER; FEFE-HYDROGENASE; ARTIFICIAL PHOTOSYNTHESIS; PHOTOCATALYTIC SYSTEM; MOLECULAR CATALYSTS; AQUEOUS-SOLUTION; H-2; PRODUCTION;
D O I
10.1038/ncomms3695
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nature has created [FeFe]-hydrogenase enzyme as a hydrogen-forming catalyst with a high turnover rate. However, it does not meet the demands of economically usable catalytic agents because of its limited stability and the cost of its production and purification. Synthetic chemistry has allowed the preparation of remarkably close mimics of [FeFe]-hydrogenase but so far failed to reproduce its catalytic activity. Most models of the active site represent mimics of the inorganic cofactor only, and the enzyme-like reaction that proceeds within restricted environments is less well understood. Here we report that chitosan, a natural polysaccharide, improves the efficiency and durability of a typical mimic of the diiron subsite of [FeFe]-hydrogenase for photocatalytic hydrogen evolution. The turnover number of the self-assembling system increases similar to 4,000-fold compared with the same system in the absence of chitosan. Such significant improvements to the activity and stability of artificial [FeFe]-hydrogenase-like systems have, to our knowledge, not been reported to date.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Biochemistry - Biological hydrogen production: Not so elementary [J].
Adams, MWW ;
Stiefel, EI .
SCIENCE, 1998, 282 (5395) :1842-1843
[2]   Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals [J].
Aldana, J ;
Lavelle, N ;
Wang, YJ ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (08) :2496-2504
[3]   Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells [J].
Andreiadis, Eugen S. ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc ;
Artero, Vincent .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2011, 87 (05) :946-964
[4]   Photochemical conversion of solar energy [J].
Balzani, Vincenzo ;
Credi, Alberto ;
Venturi, Margherita .
CHEMSUSCHEM, 2008, 1 (1-2) :26-58
[5]   Aza- and Oxadithiolates Are Probable Proton Relays in Functional Models for the [FeFe]-Hydrogenases [J].
Barton, Bryan E. ;
Olsen, Matthew T. ;
Rauchfuss, Thomas B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (50) :16834-+
[6]   Electron transfer at a dithiolate-bridged diiron assembly: Electrocatalytic hydrogen evolution [J].
Borg, SJ ;
Behrsing, T ;
Best, SP ;
Razavet, M ;
Liu, XM ;
Pickett, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (51) :16988-16999
[7]   Oxidation reduction potential of ascorbic acid (Vitamin C) [J].
Borsook, H ;
Keighley, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1933, 19 :875-878
[8]   Controlled Assembly of Hydrogenase-CdTe Nanocrystal Hybrids for Solar Hydrogen Production [J].
Brown, Katherine A. ;
Dayal, Smita ;
Ai, Xin ;
Rumbles, Garry ;
King, Paul W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (28) :9672-9680
[9]   Combining acid-base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase [J].
Camara, James M. ;
Rauchfuss, Thomas B. .
NATURE CHEMISTRY, 2012, 4 (01) :26-30
[10]   Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system [J].
Cao, Wei-Ning ;
Wang, Feng ;
Wang, Hong-Yan ;
Chen, Bin ;
Feng, Ke ;
Tung, Chen-Ho ;
Wu, Li-Zhu .
CHEMICAL COMMUNICATIONS, 2012, 48 (65) :8081-8083