Widespread energy limitation to life in global subseafloor sediments

被引:80
作者
Bradley, J. A. [1 ,2 ]
Arndt, S. [3 ]
Amend, J. P. [4 ,5 ]
Burwicz, E. [6 ]
Dale, A. W. [6 ]
Egger, M. [7 ]
LaRowe, D. E. [4 ]
机构
[1] Queen Mary Univ London, Sch Geog, London, England
[2] German Res Ctr Geosci, GFZ, Dept Geochem, Potsdam, Germany
[3] Univ Libre Bruxelles, Dept Geosci Environm & Soc, Brussels, Belgium
[4] Univ Southern Calif, Dept Earth Sci, Los Angeles, CA 90007 USA
[5] Univ Southern Calif, Dept Biol Sci, Los Angeles, CA 90007 USA
[6] Helmholtz Ctr Ocean Res, GEOMAR, Kiel, Germany
[7] Ocean Cleanup Fdn, Rotterdam, Netherlands
关键词
PARTIAL MOLAL PROPERTIES; ORGANIC-CARBON DEGRADATION; IN-SITU; HIGH-PRESSURES; DEEP-SEA; THERMODYNAMIC PROPERTIES; TRANSPORT-PROPERTIES; MARINE-SEDIMENTS; MICROBIAL LIFE; BENTHIC MINERALIZATION;
D O I
10.1126/sciadv.aba0697
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial cells buried in subseafloor sediments comprise a substantial portion of Earth's biosphere and control global biogeochemical cycles; however, the rate at which they use energy (i.e., power) is virtually unknown. Here, we quantify organic matter degradation and calculate the power utilization of microbial cells throughout Earth's Quaternary-age subseafloor sediments. Aerobic respiration, sulfate reduction, and methanogenesis mediate 6.9, 64.5, and 28.6% of global subseafloor organic matter degradation, respectively. The total power utilization of the subseafloor sediment biosphere is 37.3 gigawatts, less than 0.1% of the power produced in the marine photic zone. Aerobic heterotrophs use the largest share of global power (54.5%) with a median power utilization of 2.23 x 10(-18) watts per cell, while sulfate reducers and methanogens use 1.08 x 10(-19) and 1.50 x 10(-20) watts per cell, respectively. Most subseafloor cells subsist at energy fluxes lower than have previously been shown to support life, calling into question the power limit to life.
引用
收藏
页数:9
相关论文
共 114 条
[1]  
ARIS R, 1968, ARCH RATION MECH AN, V27, P356
[2]   Quantifying the degradation of organic matter in marine sediments: A review and synthesis [J].
Arndt, Sandra ;
Jorgensen, B. B. ;
LaRowe, D. E. ;
Middelburg, J. J. ;
Pancost, R. D. ;
Regnier, P. .
EARTH-SCIENCE REVIEWS, 2013, 123 :53-86
[3]   Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs [J].
Arnosti, C. ;
Bell, C. ;
Moorhead, D. L. ;
Sinsabaugh, R. L. ;
Steen, A. D. ;
Stromberger, M. ;
Wallenstein, M. ;
Weintraub, M. N. .
BIOGEOCHEMISTRY, 2014, 117 (01) :5-21
[4]  
Athy LF., 1930, AAPG B, V14, P1
[5]   Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria [J].
Baker, Brett J. ;
Lazar, Cassandre Sara ;
Teske, Andreas P. ;
Dick, Gregory J. .
MICROBIOME, 2015, 3
[6]   The biomass distribution on Earth [J].
Bar-On, Yinon M. ;
Phillips, Rob ;
Milo, Ron .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) :6506-6511
[7]  
Berner RA, 1980, PRINCETON SERIES GEO
[8]   Control on rate and pathway of anaerobic organic carbon degradation in the seabed [J].
Beulig, F. ;
Roy, H. ;
Glombitza, C. ;
Jorgensen, B. B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (02) :367-372
[9]   Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru [J].
Biddle, JF ;
Lipp, JS ;
Lever, MA ;
Lloyd, KG ;
Sorensen, KB ;
Anderson, R ;
Fredricks, HF ;
Elvert, M ;
Kelly, TJ ;
Schrag, DP ;
Sogin, ML ;
Brenchley, JE ;
Teske, A ;
House, CH ;
Hinrichs, KU .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3846-3851
[10]   An autonomous benthic lander: preliminary observations from the UK BENBO thematic programme [J].
Black, KS ;
Fones, GR ;
Peppe, OC ;
Kennedy, HA ;
Bentaleb, I .
CONTINENTAL SHELF RESEARCH, 2001, 21 (8-10) :859-877