A voltage sensor-domain protein is a voltage-gated proton channel

被引:454
作者
Sasaki, M
Takagi, M
Okamura, Y
机构
[1] Okazaki Inst Integrat Biosci, Sect Dev Neurophysiol, Aichi 4448787, Japan
[2] Grad Univ Adv Studies, Aichi 4448787, Japan
[3] Natl Inst Nat Sci, Natl Inst Physiol Sci, Aichi 4448787, Japan
[4] Natl Inst Adv Ind Sci & Technol, Neurosci Res Inst, Tsukuba, Ibaraki 3058566, Japan
关键词
D O I
10.1126/science.1122352
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Voltage-gated proton channels have been widely observed but have not been identified at a molecular level. Here we report that a four-transmembrane protein similar to the voltage-sensor domain of voltage-gated ion channels is a voltage-gated proton channel. Cells overexpressing this protein showed depolarization-induced outward currents accompanied by tail currents. Current reversal occured at equilibrium potentials for protons. The currents exhibited pH-dependent gating and zinc ion sensitivity, two features which are characteristic of voltage-gated proton channels. Responses of voltage dependence to sequence changes suggest that mouse voltage-sensor domain-only protein is itself a channel, rather than a regulator of another channel protein.
引用
收藏
页码:589 / 592
页数:4
相关论文
共 22 条
[1]   The voltage sensor in voltage-dependent ion channels [J].
Bezanilla, F .
PHYSIOLOGICAL REVIEWS, 2000, 80 (02) :555-592
[2]   CHARACTERIZATION OF PROTON CURRENTS IN NEURONS OF THE SNAIL, LYMNAEA-STAGNALIS [J].
BYERLY, L ;
SUEN, Y .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 413 :75-89
[3]   RAPIDLY ACTIVATING HYDROGEN-ION CURRENTS IN PERFUSED NEURONS OF THE SNAIL, LYMNAEA-STAGNALIS [J].
BYERLY, L ;
MEECH, R ;
MOODY, W .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 351 (JUN) :199-216
[4]   pH-dependent inhibition of voltage-gated H+ currents in rat alveolar epithelial cells by Zn2+ and other divalent cations [J].
Cherny, VV ;
DeCoursey, TE .
JOURNAL OF GENERAL PHYSIOLOGY, 1999, 114 (06) :819-838
[5]   Properties of single voltage-gated proton channels in human eosinophils estimated by noise analysis and by direct measurement [J].
Cherny, VV ;
Murphy, R ;
Sokolov, V ;
Levis, RA ;
DeCoursey, TE .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 121 (06) :615-628
[6]   THE VOLTAGE-ACTIVATED HYDROGEN-ION CONDUCTANCE IN RAT ALVEOLAR EPITHELIAL-CELLS IS DETERMINED BY THE PH GRADIENT [J].
CHERNY, VV ;
MARKIN, VS ;
DECOURSEY, TE .
JOURNAL OF GENERAL PHYSIOLOGY, 1995, 105 (06) :861-896
[7]   The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels [J].
DeCoursey, TE ;
Morgan, D ;
Cherny, VV .
NATURE, 2003, 422 (6931) :531-534
[8]   Voltage-gated proton channels and other proton transfer pathways [J].
Decoursey, TE .
PHYSIOLOGICAL REVIEWS, 2003, 83 (02) :475-579
[9]   Voltage-activated proton currents in human THP-1 monocytes .2. [J].
DeCoursey, TE ;
Cherny, VV .
JOURNAL OF MEMBRANE BIOLOGY, 1996, 152 (02) :131-140
[10]   Voltage-gated proton channels in microglia [J].
Eder, C ;
DeCoursey, TE .
PROGRESS IN NEUROBIOLOGY, 2001, 64 (03) :277-305